Solveeit Logo

Question

Mathematics Question on Random Experiments

The probability that a randomly chosen 5 -digit number is made from exactly two digits is :

A

121104\frac{121}{10^{4}}

B

150104\frac{150}{10^{4}}

C

135104\frac{135}{10^{4}}

D

134104\frac{134}{10^{4}}

Answer

135104\frac{135}{10^{4}}

Explanation

Solution

First Case: Choose two non-zero digits 9C2{ }^{9} C _{2}
Now, number of 5 -digit numbers containing both digits =252=2^{5}-2
Second Case: Choose one non-zero & one zero as digit 9C1{ }^{9} C _{1}
Number of 5 -digit numbers containing one non zero and one zero both =(241)=\left(2^{4}-1\right)
Required prob

=(9C2×(252)+9C1×(241))9×104=\frac{\left({ }^{9} C _{2} \times\left(2^{5}-2\right)+{ }^{9} C _{1} \times\left(2^{4}-1\right)\right)}{9 \times 10^{4}}

=36×(322)+9×(161)9×104=\frac{36 \times(32-2)+9 \times(16-1)}{9 \times 10^{4}}

=4×30+15104=135104=\frac{4 \times 30+15}{10^{4}}=\frac{135}{10^{4}}

Hence, the correct option is (C): \text{Hence, the correct option is (C): } 135104\frac{135}{10^{4}}