Solveeit Logo

Question

Question: The probability that a particular day in the month of july is a rainy day is \(\frac { 3 } { 4 }\)...

The probability that a particular day in the month of july is a

rainy day is 34\frac { 3 } { 4 } . Two person whose credibility are 45\frac { 4 } { 5 } and 23\frac { 2 } { 3 }

respectively claim that 15th july was a rainy day. The probability that it was real a rainy day.

A

34\frac { 3 } { 4 }

B

2425\frac { 24 } { 25 }

C

89\frac { 8 } { 9 }

D

None of these

Answer

2425\frac { 24 } { 25 }

Explanation

Solution

A : Event that first man speaks truth

B : Event that second man speaks truth

R : Day is rainy

P(R)= P(AB)P(R)P(AB)P(R)+P(AB)P(R)\frac { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) \cdot \mathrm { P } ( \mathrm { R } ) } { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) \cdot \mathrm { P } ( \mathrm { R } ) + \mathrm { P } ^ { \prime } \left( \mathrm { A } ^ { \prime } \cap \mathrm { B } ^ { \prime } \right) \cdot \mathrm { P } \left( \mathrm { R } ^ { \prime } \right) } =452334452334+151314\frac { \frac { 4 } { 5 } \cdot \frac { 2 } { 3 } \cdot \frac { 3 } { 4 } } { \frac { 4 } { 5 } \cdot \frac { 2 } { 3 } \cdot \frac { 3 } { 4 } + \frac { 1 } { 5 } \cdot \frac { 1 } { 3 } \cdot \frac { 1 } { 4 } }

= 2425\frac { 24 } { 25 }