Solveeit Logo

Question

Mathematics Question on Conditional Probability

The probability of guessing correctly at least 88 out of 1010 answers on a true-false type examination is

A

764\frac{7}{64}

B

7128\frac{7}{128}

C

451024\frac{45}{1024}

D

741\frac{7}{41}

Answer

7128\frac{7}{128}

Explanation

Solution

It is a binomial distribution case with n=10n = 10 and probability of guessing correctly, p=12p = \frac{1}{2} q=1p=112=12\Rightarrow q = 1 - p = 1 -\frac{1}{2} = \frac{1}{2} \therefore Required probability, P(X8)P\left(X \ge 8\right) =P(X=8)+P(X=9)+P(X=10)= P\left(X = 8\right) + P\left(X = 9\right) + P\left(X = 10\right) =10C8(12)8(12)2+10C9(12)9(12)+10C10(12)10= \,^{10}C_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}+\,^{10}C_{9}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)+\,^{10}C_{10}\left(\frac{1}{2}\right)^{10} =(12)10[10C8+10C9+10C10]= \left(\frac{1}{2}\right)^{10}\left[\,^{10}C_{8}+\,^{10}C_{9}+\,^{10}C_{10}\right] =(12)10×[45+10+1]= \left(\frac{1}{2}\right)^{10} \times\left[45+10+1\right] =56×(12)10=7128= 56\times\left(\frac{1}{2}\right)^{10} = \frac{7}{128}