Solveeit Logo

Question

Question: The probability of a bomb hitting a bridge is \(\frac { 1 } { 2 }\)and two direct hits are needed to...

The probability of a bomb hitting a bridge is 12\frac { 1 } { 2 }and two direct hits are needed to destroy it. The least number of bombs required so that the probability of the bridge beeing destroyed is greater then 0.9, is

A

8

B

7

C

6

D

9

Answer

8

Explanation

Solution

Let nn be the least number of bombs required and XX the number of bombs that hit the bridge. Then XX follows a binomial distribution with parameter nn and p=12p = \frac { 1 } { 2 }

Now P(X2)>0.91P(X<2)>0.9P ( X \geq 2 ) > 0.9 \Rightarrow 1 - P ( X < 2 ) > 0.9

P(X=0)+P(X=1)<0.1\Rightarrow P ( X = 0 ) + P ( X = 1 ) < 0.1

nC0(12)n+nC1(12)n1(12)<0.110(n+1)<2n\Rightarrow ^ { n } C _ { 0 } \left( \frac { 1 } { 2 } \right) ^ { n } + { } ^ { n } C _ { 1 } \left( \frac { 1 } { 2 } \right) ^ { n - 1 } \left( \frac { 1 } { 2 } \right) < 0.1 \Rightarrow 10 ( n + 1 ) < 2 ^ { n }

This gives n8n \geq 8