Solveeit Logo

Question

Question: The probability of A, B, C solving a problem are \(\frac { 2 } { 7 }\), \(\frac { 3 } { 8 }\) res...

The probability of A, B, C solving a problem are 27\frac { 2 } { 7 }, 38\frac { 3 } { 8 }

respectively. If all the three try to solve the problem

simultaneously, the probability that exactly one of them will

solve it, is -

A

25168\frac { 25 } { 168 }

B

2556\frac { 25 } { 56 }

C

20168\frac { 20 } { 168 }

D

30168\frac { 30 } { 168 }

Answer

2556\frac { 25 } { 56 }

Explanation

Solution

P(1) = 13\frac { 1 } { 3 } ,P(2) = 27\frac { 2 } { 7 } , P(3) = 38\frac { 3 } { 8 }

Required Prob. = P (1) P( B\overline { \mathrm { B } } ) P(A\overline { \mathrm { A } })P(2) P(3) +

P(A\overline { \mathrm { A } }) P() P(3)

= 13\frac { 1 } { 3 } (138)\left( 1 - \frac { 3 } { 8 } \right) +(113)\left( 1 - \frac { 1 } { 3 } \right)

(127)\left( 1 - \frac { 2 } { 7 } \right) 38\frac { 3 } { 8 }