Solveeit Logo

Question

Mathematics Question on Probability

The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c, respectively. Of these subjects, the students has a 75% chance of passing in at least one, a 50% chance of passing in at least two and a 40% chance of passing in exactly two. Which of the following relations are true

A

p + m + c =1920\frac{19}{20}

B

p + m + c =2720\frac{27}{20}

C

pmc=110\frac{1}{10}

D

pmc=14\frac{1}{4}

Answer

pmc=110\frac{1}{10}

Explanation

Solution

Let A, B and C respectively denote the events that the
student passes in Maths, Physics and Chemistry.
It is given,
P(A)=m,P(B)=pP(A) = m, P(B) = p and P(C)=cP(C) = c and P (passing atleast in one subject)
\hspace30mm =P(A \cup B \cup C)=0.75
1P(ABC)=0.75\Rightarrow \, \, \, \, 1-P(A' \cap B' \cap C')=0.75
[P(A)=1P(A)\because \, \, \, \, \, \, \, \, \, \, \, \, \, \, [P(A)=1-P(\overline{A})
and [P(ABC)]=P(ABC)] \, \, \, \, \, \, \, \, [P\overline{(A \cup B \cup C)}]=P(A' \cap B' \cap C')]
1P(A).P(B).P(C)=0.75\Rightarrow \, \, \, \, \, \, \, \, \, 1-P(A').P(B').P(C')=0.75
A,B\therefore \, A, B and CC are independent events, therefore A,BA', B' and CC ' are independent events.
0.75=1(1m)(1q)(1c)\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 0.75=1-(1-m)(1-q)(1-c)
0.25=(1m)(1q)(1c)\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 0.25=(1-m)(1-q)(1-c)
...(i)
Also, P (passing exactly in two subj|ects)= 0.4
P(ABCABCABC)=0.4\Rightarrow \, P(A \cap B \cap \overline{C} \cup \, A \cap \overline{B} \cap C \cup \overline{A} \cap B \cap C)= 0.4
P(ABC)+P(ABC)+P(ABC)=0.4\Rightarrow \, \, P(A \cap B \cap \overline{C}) +\, P(A \cap \overline{B} \cap C ) + \, P(\overline{A} \cap B \cap C)=0.4
P(A)P(B)P(C)+P(A)P(B)P(C)\Rightarrow \, \, P(A)P(B)P(\overline{C})+P(A)P(\overline{B})P(C)
\hspace30mm + P(\overline{A}) P(B) P(C)= 0.4
pm(1c)+p(1m)c+(1p)mc=0.4\Rightarrow \, \, pm (1 - c) + p(1 - m) c + (1 - p) mc = 0.4
pmpmc+pcpmc+mcpmc=0.4...\Rightarrow \, \, pm - pmc + pc - pmc + mc - pmc = 0.4 ...(ii)
Again, P (passing atleast in two subjects) = 0.5
\hspace30mm + P(\overline{A}) P(B) P(C)= 0.4
pm(1c)+pc(1m)+cm(1p)+pcm=0.5\Rightarrow \, \, \, pm(1 - c) + pc(1 -m )+ cm( 1 - p) + pcm = 0.5
pmpcmn+pcpcm+cmpcm+pcm=0.5\Rightarrow \, \, \, pm - pcmn + p c - pcm + cm - pcm + pcm = 0.5
(pm+pc+me)2pcm=0.5...........\Rightarrow \, \, \, (pm + pc + me ) -2pcm =0.5 ...........(iii)
From E (ii),
\hspace20mm pm+ pc+ mc-3pcm =0.4 ...(iv)
From E (i),
025=1(m+p+c)+(pm+pc+cm)pcm...........025 = 1 - (m + p + c )+ (pm + pc + cm) - pcm ........... .(v)
On solving Eqs. (iii), (iv) and (v), we get
\hspace20mm p + m + c= 1.35 = 27/20
Therefore, option (b) is correct.
Also, from Eqs. (ii) and (iii), we get pmc= 1/10

Hence, option (c) is correct.