Solveeit Logo

Question

Question: The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c, respe...

The probabilities that a student passes in Mathematics,

Physics and Chemistry are m, p and c, respectively. Of these subjects the student has 75% chance of passing in atleast one, a 50% chance of passing in atleast two, and a 40% chance of passing in exactly two. Which of the following relation is true?

A

p + m + c = 1920\frac { 19 } { 20 }

B

p + m + c = 2720\frac { 27 } { 20 }

C

p m c = 15\frac { 1 } { 5 }

D

p m c = 14\frac { 1 } { 4 }

Answer

p + m + c = 2720\frac { 27 } { 20 }

Explanation

Solution

We have,

P (A Č B Č C) = 34\frac { 3 } { 4 }

i.e., P (1) + P (2) + P (3) = P (A Ē B) – P (B Ē C) –

P (A Ē C) + P (A Ē B Ē C) = 34\frac { 3 } { 4 }… (1)

P (A Ē B) + P (B Ē C) + P (A Ē C)

– 2 P (A Ē B Ē C) = 12\frac { 1 } { 2 } … (2)

and P (A Ē B) + P (B Ē C) + P (A Ē C)

– 3 P (A Ē B Ē C) = 25\frac { 2 } { 5 } … (3)

From (2) and (3), we get P (A Ē B Ē C) = 12\frac { 1 } { 2 }25\frac { 2 } { 5 } = 110\frac { 1 } { 10 }

… (4)

Ž P (1) P (2) P (3) = 110\frac { 1 } { 10 } Ž p m c = 110\frac { 1 } { 10 } .

From (1), (2) and (3), we have

P (1) + P (2) + P (3) – (12+210)\left( \frac { 1 } { 2 } + \frac { 2 } { 10 } \right) + 34\frac { 3 } { 4 }

Ž p + m + c = 2720\frac { 27 } { 20 } .

Hence (2) is correct answer