Solveeit Logo

Question

Question: The principle amplitude of \[{(\sin {40^ \circ } + i\cos {40^ \circ })^5}\]is: A. \[{70^ \circ }\]...

The principle amplitude of (sin40+icos40)5{(\sin {40^ \circ } + i\cos {40^ \circ })^5}is:
A. 70{70^ \circ }
B. 1100 - {1100^ \circ }
C. 70110{70^{110}}
D. 7070{70^{ - 70}}

Explanation

Solution

De Moivre’s Theorem: For any complex number z = {\left\\{ {r(\cos \theta + i\sin \theta )} \right\\}^n}, where n is any integer , the given complex number can be written as:
z = {\left\\{ {r(\cos \theta + i\sin \theta )} \right\\}^n} = {r^n}\left\\{ {\cos (n\theta ) + i\sin (n\theta )} \right\\}
Principal argument of any complex numberz=x+iyz = x + iyis given as θ=tan1yx\theta = {\tan ^{ - 1}}\dfrac{y}{x}.

Complete step by step solution:
Given complex numbers (sin40+icos40)5{(\sin {40^ \circ } + i\cos {40^ \circ })^5}.
Simplifying the complex number:

\Rightarrow {(\sin {40^ \circ } + i\cos {40^ \circ })^5} \\\ \Rightarrow {\left\\{ {\sin {{(90 - 50)}^ \circ } + i\cos {{(90 - 50)}^ \circ }} \right\\}^5} \\\ \Rightarrow {\left\\{ {\cos {{50}^ \circ } + i\sin {{50}^ \circ }} \right\\}^5} \\\

DeMoivresTheorem:DeMoivre'sTheorem:For any complex number z = {\left\\{ {r(\cos \theta + i\sin \theta )} \right\\}^n}, where n is any integer , the given complex number can be written as:
z = {\left\\{ {r(\cos \theta + i\sin \theta )} \right\\}^n} = {r^n}\left\\{ {\cos (n\theta ) + i\sin (n\theta )} \right\\}

(cos50+isin50)5 (cos(5)(50)+isin(5)(50)) (cos250+isin250) cos(360110)+isin(360110) cos110isin110  \Rightarrow {(\cos {50^ \circ } + i\sin {50^ \circ })^5} \\\ \Rightarrow \left( {\cos (5){{\left( {50} \right)}^ \circ } + i\sin (5)\left( {50} \right)} \right) \\\ \Rightarrow (\cos {250^ \circ } + i\sin {250^ \circ }) \\\ \Rightarrow \cos {\left( {360 - 110} \right)^ \circ } + i\sin {\left( {360 - 110} \right)^ \circ } \\\ \Rightarrow \cos {110^ \circ } - i\sin {110^ \circ } \\\

Principal argument:

=tan1(sin110cos110) =tan1(tan110) =110  = {\tan ^{ - 1}}\left( { - \dfrac{{\sin {{110}^ \circ }}}{{\cos {{110}^ \circ }}}} \right) \\\ = {\tan ^{ - 1}}\left( { - \tan {{110}^{^ \circ }}} \right) \\\ = - {110^{^ \circ }} \\\

None of the given options is correct.
Correct answer is 110{110^ \circ }.

Note:
Principal Amplitude: The value of t which lies in the interval(π,π)( - \pi ,\pi ), is called the principal amplitude of the complex number z=x+iyz = x + iy. Principal amplitude of a complex number can be found as follows.
t=tan1(yx)\Rightarrow t = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)
Consider the following points:
(a) principal argument will be tt, if both a and b are positive.
(b) principal argument will be πt\pi - t, if both a and b are positive.
(c) principal argument will be (πt) - \left( {\pi - t} \right), if both a and b are positive.
(d) principal argument will be t - t, if both a and b are positive.