Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The principal value of the arg(z)arg (z) and z | z | of the complex number z=1+cos(11π9)+isin11π9z=1+\cos\left(\frac{11\pi}{9}\right)+ i \, \sin\frac{11\pi}{9} are respectively

A

11π8,2cos(π18)\frac{11\pi}{8},2\,\cos\left(\frac{\pi}{18}\right)

B

7π18,2cos(11π18)-\frac{7\pi}{18},-2\,\cos\left(\frac{11\pi}{18}\right)

C

2π9,2cos(7π18)\frac{2\pi}{9},2\,\cos\left(\frac{7\pi}{18}\right)

D

π9,2cos(π18)-\frac{\pi}{9},-2\,\cos\left(\frac{\pi}{18}\right)

Answer

7π18,2cos(11π18)-\frac{7\pi}{18},-2\,\cos\left(\frac{11\pi}{18}\right)

Explanation

Solution

z=2cos211π18+2isin11π18cos11π18z=2\,cos^{2} \frac{11\pi}{18}+2i\,sin \frac{11\pi}{18}\, cos\, \frac{11\pi}{18} =2cos11π18cis(11π18)=2\,cos\, \frac{11\pi}{18}\, cis \left(\frac{11\pi}{18}\right) But 11π18\frac{11\pi}{18} is in the IlndIlnd quadrant cos11π18<0\therefore cos \frac{11\pi}{18} < 0 z=2cos(11π18)cis(11π18π)\therefore z=-2\,cos\left(\frac{11\pi}{18}\right)cis\left(\frac{11\pi}{18}-\pi\right) =2cos(11π18)cis(7π18)= -2\,cos\left(\frac{11\pi}{18}\right)cis\left(-\frac{7\pi}{18}\right) Argz=7π18\therefore Arg z=-\frac{7\pi}{18} i.e., z=2cos(π18)\left|z\right|=-2\,cos\left(\frac{\pi}{18}\right)