Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The principal value of sin1(sin5π3)sin^{-1} \left(sin \frac{5\pi}{3}\right) is

A

5π3-\frac{5\pi}{3}

B

5π3\frac{5\pi}{3}

C

π3-\frac{\pi}{3}

D

4π3\frac{4\pi}{3}

Answer

π3-\frac{\pi}{3}

Explanation

Solution

Let θ=sin1[sin5π3]\theta = sin^{-1}\left[sin\frac{5\pi}{3}\right]
sinθ=sin5π3=sin[2ππ3]\Rightarrow sin\,\theta = sin\frac{5\pi }{3} = sin\left[2\pi-\frac{\pi}{3}\right]
sinθ=sinπ3=sin(π3)\Rightarrow sin\,\theta = -sin\frac{\pi }{3} = sin \left(\frac{-\pi }{3}\right)
(sin(θ)=sinθ)\left(\because \,sin\, \left(- \theta \right)= \,- \,sin \,\theta\right)
Therefore, principal value of sin1sin^{-1}
[sin5π3]\left[sin\frac{5\pi }{3}\right] is π3\frac{-\pi }{3}, as principal value of sinsin^{-}
1x^{1} \,x lies between π2\frac{-\pi }{2} and π2.\frac{\pi }{2}.