Solveeit Logo

Question

Question: The principal value of $\sec^{-1}(-\frac{2}{\sqrt{3}})$ will be...

The principal value of sec1(23)\sec^{-1}(-\frac{2}{\sqrt{3}}) will be

A

π2-\frac{\pi}{2}

B

π6-\frac{\pi}{6}

C

π4-\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

The principal value is 5π6\frac{5\pi}{6}, which is not among the given options.

Explanation

Solution

Let

sec1(23)=θ,\sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \theta,

then

secθ=23orcosθ=32.\sec\theta = -\frac{2}{\sqrt{3}} \quad \text{or} \quad \cos\theta = -\frac{\sqrt{3}}{2}.

The cosine function equals 32-\frac{\sqrt{3}}{2} at

θ=5π6(or 150)\theta = \frac{5\pi}{6} \quad (\text{or } 150^\circ)

in the principal range [0,π]{π/2}[0,\pi]\setminus\{\pi/2\} for sec1(x)\sec^{-1}(x).

Steps:

  1. Expressed secθ\sec\theta in terms of cosθ\cos\theta.
  2. Solved cosθ=32\cos\theta = -\frac{\sqrt{3}}{2} within the principal range [0,π],θπ2[0, \pi],\, \theta \neq \frac{\pi}{2}.
  3. Obtained θ=5π6\theta = \frac{5\pi}{6}.