Question
Mathematics Question on Trigonometric Functions
The principal solutions of tan 3θ = –1 are
A
4π,127π,1211π,16π,419π,1223π
B
4π,127π,1211π,45π,1219π,1223π
C
4π,12π
D
4π,12π,1213π,47π,419π,1223π
Answer
4π,127π,1211π,45π,1219π,1223π
Explanation
Solution
Tan 3θ = -1
Tan 3θ = - Tan 4π = Tan (π - 4π) = Tan (2π - 4π) = Tan (3π - 4π) = Tan (4π - 4π) = Tan (5π - 4π) = Tan (6π - 4π)
Tan 3θ = tan 43π = tan 47π = tan 411π = tan 415π = tan 419π = tan 423π
3θ = 43π = 47π = 411π = 415π = 419π = 423π
θ = 4π = 127π = 1211π =45π= 1219π = 1223π
So principal solutions are {4π, 127π, 1211π, 45π, 1219π, 1223π}
Therefore the correct option is (B).