Solveeit Logo

Question

Question: The principal argument of the complex number \(\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{- 2i( - \sqrt{...

The principal argument of the complex number

(1+i)5(1+3i)22i(3+i)\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{- 2i( - \sqrt{3} + i)} is

A

19π12\frac{19\pi}{12}

B

7π12- \frac{7\pi}{12}

C

5π12- \frac{5\pi}{12}

D

5π12\frac{5\pi}{12}

Answer

5π12- \frac{5\pi}{12}

Explanation

Solution

Sol.

(1+i)5(1+3i)22i(3+i)=(2)5(12+i2)5.22(12+32i)2(2i)2(32i2)\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{- 2i( - \sqrt{3} + i)} = \frac{(\sqrt{2})^{5}\left( \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)^{5}.2^{2}\left( \frac{1}{2} + \frac{\sqrt{3}}{2}i \right)^{2}}{(2i)2\left( \frac{\sqrt{3}}{2} - \frac{i}{2} \right)}

\ argument = 5π4+2π3π2+π6=19π12\frac{5\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{2} + \frac{\pi}{6} = \frac{19\pi}{12}

\ principal argument is 5π12- \frac{5\pi}{12}