Solveeit Logo

Question

Physics Question on spherical lenses

The power of biconvex lens is 10 dioptre and the radius of curvature of each surface is 10 cm. Then the refractive index of the material of the lens is

A

32\frac{3}{2}

B

43\frac{4}{3}

C

98\frac{9}{8}

D

53\frac{5}{3}

Answer

32\frac{3}{2}

Explanation

Solution

Power of lens,
P(indioptre)=100focallengthf(incm)P { (in\, dioptre)= \frac{100}{focal \, length \, f (in \, cm)}}
f=10010=10cm\therefore \:\:\:\: f = \frac{100}{10} = { 10 \, cm}
According to lens maker?s formula
1f=(μ1)(1R11R2)\frac{1}{f} = (\mu -1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
For biconvex lens, R1=+R,R2=RR_1 = + R, R_2 = - R
1f=(μ1)(1R1R)\therefore \:\: \frac{1}{f}=\left(\mu-1\right)\left(\frac{1}{R} - \frac{1}{R}\right)
1f=(μ1)(2R)\frac{1}{f}=\left(\mu-1\right)\left(\frac{2}{R}\right)
110=(μ1)(210)\frac{1}{10}=\left(\mu-1\right)\left(\frac{2}{10}\right)
(μ1)=12μ=12+1=32\left(\mu-1\right)=\frac{1}{2} \Rightarrow \mu=\frac{1}{2}+1=\frac{3}{2}