Solveeit Logo

Question

Question: The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is 10 Cm. The...

The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is 10 Cm. Then the refractive index of the material of the lens is :

A

32\frac { 3 } { 2 }

B

43\frac { 4 } { 3 }

C

98\frac { 9 } { 8 }

D

53\frac { 5 } { 3 }

Answer

32\frac { 3 } { 2 }

Explanation

Solution

: Power of lens, P (in dioptre)

=100 focallength ( Odl njb) f( in cm )= \frac { 100 } { \text { focallength } ( \text { Odl njb) } \mathrm { f } ( \text { in cm } ) }

f=10010=10 cm\therefore \mathrm { f } = \frac { 100 } { 10 } = 10 \mathrm {~cm}

According to lens maker’s formula

1f=(μ1)(1R11R2)\frac { 1 } { \mathrm { f } } = ( \mu - 1 ) \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right)

For biconvex lens,

1f=(μ1)(2R)110=(μ1)(210)\frac { 1 } { \mathrm { f } } = ( \mu - 1 ) \left( \frac { 2 } { \mathrm { R } } \right) \Rightarrow \frac { 1 } { 10 } = ( \mu - 1 ) \left( \frac { 2 } { 10 } \right)

(μ1)=12μ=12+1=32( \mu - 1 ) = \frac { 1 } { 2 } \Rightarrow \mu = \frac { 1 } { 2 } + 1 = \frac { 3 } { 2 }