Solveeit Logo

Question

Question: The potential (in volts) of a charge distribution is given by \[V\left( z \right){\text{ }} = ...

The potential (in volts) of a charge distribution is given by
V(z) = 30  5z2for z1mV\left( z \right){\text{ }} = {\text{ }}30{\text{ }} - {\text{ }}5{z^2}for{\text{ }}\left| z \right| \leqslant 1m
V(z) = 35  10z for z1mV\left( z \right){\text{ }} = {\text{ }}35{\text{ }} - {\text{ }}10z{\text{ }}for{\text{ }}\left| z \right| \geqslant 1m
V(z) does not depends on x and y.V\left( z \right){\text{ }}does{\text{ }}not{\text{ }}depends{\text{ }}on{\text{ }}x{\text{ }}and{\text{ }}y.
If the potential is generated by a constant charge per unit volume r0(in units ofe0){r_0}(in{\text{ }}units{\text{ }}of{e_0})which is
spread over a certain region, then choose the correct statement:
A. r0= 20e0for z1m andr0=0{r_0} = {\text{ }}20{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0 elsewhere.
B. .r0=40e0.{r_0} = 40{e_0} in the entire region.
C. r0= 10e0for z1m andr0=0{r_0} = {\text{ }}10{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0 elsewhere.
D. r0=20e0{r_0} = 20{e_0} in the entire region.

Explanation

Solution

1. Here before solving this problem we need to know about Gauss’ law and also Poisson’s equation.
2. If V is the electrical potential generated by a static charge distribution of charge density ρ then according to Poisson’s equation
2V=ρε0^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}}
3. Every electrical potential follows Poisson’s equation.

Complete step by step solution :
For z1m\left| z \right| \leqslant 1m,
V(z)= 30  5z2(given).V\left( z \right) = {\text{ }}30{\text{ }} - {\text{ }}5{z^2}\left( {given} \right).
Now, Putting This expression of V(z) in Poisson’s equation we get,

2V=ρε0 2Vx2+2Vy2+2Vz2=ρε0 2Vz2=ρε0 2(305z2)z2=ρε0 (10z)z=ρε0 10=ρε0 ρ=10ε0  ^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}} \\\ \Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \dfrac{{{\partial ^2}(30 - 5{z^2})}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \dfrac{{\partial ( - 10z)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow - 10 = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \rho = 10{\varepsilon _0} \\\

As V is independent of x and y, so the 1st{1^{st}}two terms of 2V{\nabla ^2}V vanishes.
So for z1m\left| z \right| \leqslant 1m region the charge density is10ε010{\varepsilon _0}
Now, For z1m, V(z)= 3510z (given).\left| z \right| \geqslant 1m,{\text{ }}V\left( z \right) = {\text{ }}35 - 10z{\text{ }}\left( {given} \right).
Putting This expression of V(z)V\left( z \right)in Poisson’s equation we get,
 2(3510z)z2=ρε0 (10)z=ρε0 0=ρε0 ρ=0  \\\ \Rightarrow \dfrac{{{\partial ^2}(35 - 10z)}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \dfrac{{\partial ( - 10)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow 0 = - \dfrac{\rho }{{{\varepsilon _0}}} \\\ \Rightarrow \rho = 0 \\\
So for z1m\left| z \right| \geqslant 1m region the charge density is zero.
Therefore the final answer is r0= 10e0for z1m andr0=0{r_0} = {\text{ }}10{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0 elsewhere.
Hence the correct answer is (C).

Note:
1. In this type of problem we have to use proper expression of gradient operator based on the potential (in which coordinate system it is given)\left( {in{\text{ }}which{\text{ }}coordinate{\text{ }}system{\text{ }}it{\text{ }}is{\text{ }}given} \right)because for cartesian coordinate system the expression of 2V{\nabla ^2}V is given in solution but for cylindrical and spherical polar Coordinate system the expression of 2V{\nabla ^2}V is different.
2. Extra care should be given while doing the partial derivative.