Solveeit Logo

Question

Physics Question on potential energy

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is - (where, EE is the total energy)

A

14E\frac{1}{4}E

B

12E\frac{1}{2}E

C

23E\frac{2}{3}E

D

18E\frac{1}{8}E

Answer

14E\frac{1}{4}E

Explanation

Solution

Potential energy of a simple harmonic oscillator
U=12mω2y2U=\frac{1}{2} m \omega^{2} y^{2}
Kinetic energy of a simple harmonic oscillator
K=12mω2(A2y2)K=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)
Here, y=y= displacement from mean position
A=A= maximum displacement from mean position (or amplitude)
Total energy, E=U+KE=U+K
E=0+RE =0+R
=12mω2y2+12mω2(A2y2)=\frac{1}{2} m \omega^{2} y^{2}+\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)
=12mω2A2=\frac{1}{2} m \omega^{2} A^{2}
When the particle is half way to its end point ie, at half of its amplitude, then
y=A2y=\frac{A}{2}
Hence, potential energy
U=12mω2(A2)2U =\frac{1}{2} m \omega^{2}\left(\frac{A}{2}\right)^{2}
=14(12mω2A2)=\frac{1}{4}\left(\frac{1}{2} m \omega^{2} A^{2}\right)
U=E4U =\frac{E}{4}