Solveeit Logo

Question

Question: The potential energy of a particle varies with distance x from a fixed origin as \(U = \frac{A\sqrt{...

The potential energy of a particle varies with distance x from a fixed origin as U=Axx2+B,U = \frac{A\sqrt{x}}{x^{2} + B}, where A and B are dimensional constants then dimensional formula for AB is

A

ML7/2T2- 2

B

ML11/2T2ML^{11/2}T^{- 2}

C

M2L9/2T2M^{2}L^{9/2}T^{- 2}

D

ML13/2T3ML^{13/2}T^{- 3}

Answer

ML11/2T2ML^{11/2}T^{- 2}

Explanation

Solution

From the dimensional homogeneity [x2]=[B]\lbrack x^{2}\rbrack = \lbrack B\rbrack

∴ [B] = [L2]

As well as [U]=[A][x1/2][x2]+[B]\lbrack U\rbrack = \frac{\lbrack A\rbrack ⥂ \lbrack x^{1/2}\rbrack}{\lbrack x^{2}\rbrack + \lbrack B\rbrack}[ML2T2]=[A][L1/2][L2]\lbrack ML^{2}T^{- 2}\rbrack = \frac{\lbrack A\rbrack\lbrack L^{1/2}\rbrack}{\lbrack L^{2}\rbrack} [A]=[ML7/2T2]\therefore\lbrack A\rbrack = \lbrack ML^{7/2}T^{- 2}\rbrack

Now [AB]=[ML7/2T2]×[L2]=[ML11/2T2]\lbrack AB\rbrack = \lbrack ML^{7/2}T^{- 2}\rbrack \times \lbrack L^{2}\rbrack = \lbrack ML^{11/2}T^{- 2}\rbrack