Solveeit Logo

Question

Physics Question on potential energy

The potential energy of a 1 kg particle free to move along the xx-axis is given by V(x)=(x44x22)J.V\left(x\right)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)\,J. The total mechanical energy of the particle is 2 J. Then , the maximum speed (in m/s) is :

A

3/23/\sqrt{2}

B

2\sqrt{2}

C

1/21/\sqrt{2}

D

22

Answer

3/23/\sqrt{2}

Explanation

Solution

V(x)=(x44x22)V\left(x\right)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) For minimum value of V,dVdx=0V, \frac{dV}{dx}=0 4x342x2=0x=0,x=±1\Rightarrow \frac{4x^{3}}{4}-\frac{2x}{2}=0 \Rightarrow x=0, x=\pm1 So, Vmin.(x=±1)=1412=14jV_{min.}\left(x=\pm1\right)=\frac{1}{4}-\frac{1}{2}=\frac{-1}{4}\,j Kmax.+Vmin.=\therefore K_{max.}+V_{min.}= Total mechanical energy Kmax=(1/4)+2Kmax.=9/4K_{max}=\left(1/4\right)+2 \Rightarrow K_{max.}=9/4 mv22=94v=32m/s\Rightarrow \frac{mv^{2}}{2}=\frac{9}{4} \Rightarrow v=\frac{3}{\sqrt{2}}m/s