Solveeit Logo

Question

Physics Question on potential energy

The potential energy of a 1 kg particle free to move along the x-axis is given by V(x)=(x44x22)JV \left(x\right)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J\cdot The total mechanical energy of the particle is 2 J. Then , the maximum speed (in m/s) is :

A

3/ 2\sqrt{2}

B

2\sqrt{2}

C

1/ 2\sqrt{2}

D

2

Answer

3/ 2\sqrt{2}

Explanation

Solution

v(x)=(x44x22)v\left(x\right)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) For minimum value of V, dvdx=0\frac{d v}{d x}=0 4x342x2=0x=0,x=±1\Rightarrow \frac{4x^{3}}{4}-\frac{2x}{2}=0 \Rightarrow x=0, x=\pm 1 so,vmin(x=±1)=1412=14Jso, \, v_{min} \left(x=\pm1\right)=\frac{1}{4}-\frac{1}{2}=\frac{-1}{4}J kmax+vmin.=\therefore k_{max} +v_{min.}= total mechanical energy kmax=(1/4)+2kmax.=9/4\therefore k_{max} =\left(1 /4\right)+2 \Rightarrow k_{max.} =9 /4 mv22=94v=32\Rightarrow\, \quad\frac{m v^{2}}{2}=\frac{9}{4} \Rightarrow v=\frac{3}{\sqrt{2}} m/s