Solveeit Logo

Question

Physics Question on potential energy

The potential energy function for the force between two atoms in a diatomic molecule is approximately given by U(x)=ax12bx6U\left(x\right) = \frac{a}{x^{12}} - \frac{b}{x^{6}}, where a and b are constants and x is the distance between the atoms. If the dissociation energy of the molecule is d=[U(x=)Uatequilibrium],Dd = \left[U\left(x = \infty\right) - U_{at \,equilibrium}\right], D is

A

b22a\frac{b^{2}}{2a}

B

b212a\frac{b^{2}}{12a}

C

b24a\frac{b^{2}}{4a}

D

b26a\frac{b^{2}}{6a}

Answer

b24a\frac{b^{2}}{4a}

Explanation

Solution

U(x)=ax12bx6U\left(x\right) = \frac{a}{x^{12}}-\frac{b}{x^{6}} U(x=)=0U\left(x = \infty\right) = 0 as, F=dUdx=[12ax13+6bx7]\quad F = -\frac{dU}{dx} = -\left[\frac{12a}{x^{13}}+\frac{6b}{x^{7}}\right] at equilibrium, F=0F = 0 x6=2ab\therefore\quad x^{6} = \frac{2a}{b} Uatequilibrium=a(2ab)2b(2ab)=b24a\therefore\quad U_{at \,equilibrium} = \frac{a}{\left(\frac{2a}{b}\right)^{2}}-\frac{b}{\left(\frac{2a}{b}\right)} = \frac{-b^{2}}{4a} D=[U(x=)Uatequilibrium]=b24a\therefore\quad D = \left[U \left(x = \infty\right)-U_{at \,equilibrium}\right] = \frac{b^{2}}{4a}