Solveeit Logo

Question

Question: The potential energy between two atoms in a molecule is given by \(U ( x ) = \frac { a } { x ^ { 12 ...

The potential energy between two atoms in a molecule is given by U(x)=ax12bx6U ( x ) = \frac { a } { x ^ { 12 } } - \frac { b } { x ^ { 6 } }; where a and b are positive constants and x is the distance between the atoms. The atom is in stable equilibrium when

A

x=11a5b6x = \sqrt [ 6 ] { \frac { 11 a } { 5 b } }

B

x=a2b6x = \sqrt [ 6 ] { \frac { a } { 2 b } }

C

x=0x = 0

D

x=2ab6x = \sqrt [ 6 ] { \frac { 2 a } { b } }

Answer

x=2ab6x = \sqrt [ 6 ] { \frac { 2 a } { b } }

Explanation

Solution

Condition for stable equilibriumF=dUdx=0F = - \frac { d U } { d x } = 0

ddx[ax12bx6]=0- \frac { d } { d x } \left[ \frac { a } { x ^ { 12 } } - \frac { b } { x ^ { 6 } } \right] = 012ax13+6bx7=0- 12 a x ^ { - 13 } + 6 b x ^ { - 7 } = 0

12ax13=6bx7\frac { 12 a } { x ^ { 13 } } = \frac { 6 b } { x ^ { 7 } }2ab=x6\frac { 2 a } { b } = x ^ { 6 }x=2ab6x = \sqrt [ 6 ] { \frac { 2 a } { b } }