Solveeit Logo

Question

Question: The potential at a point x due to some charge is given by equation V(x) = \(\frac{20}{(x^{2} - 4)}\)...

The potential at a point x due to some charge is given by equation V(x) = 20(x24)\frac{20}{(x^{2} - 4)} volts. Then electric field at x =4 is given by –

A

53\frac{5}{3} volt/m and in the –ve x direction

B

53\frac{5}{3}volt/ m and in the +ve x direction

C

109\frac{10}{9} volt/m and in the –ve x direction

D

109\frac{10}{9} volt/m and in the +ve x direction

Answer

109\frac{10}{9} volt/m and in the +ve x direction

Explanation

Solution

Ex = –= – δδx\frac { \delta } { \delta x } (20x24)\left( \frac { 20 } { x ^ { 2 } - 4 } \right) = 20×2x(x24)2\frac { 20 \times 2 \mathrm { x } } { \left( \mathrm { x } ^ { 2 } - 4 \right) ^ { 2 } }

Ex = 40x(x24)2\frac { 40 x } { \left( x ^ { 2 } - 4 \right) ^ { 2 } } = 40×4144\frac { 40 \times 4 } { 144 } =109\frac { 10 } { 9 } in + x direction.