Solveeit Logo

Question

Question: The positive integer value of \[n > 3\] satisfying the equation \[\dfrac{1}{{\sin \left( {\dfrac{\pi...

The positive integer value of n>3n > 3 satisfying the equation 1sin(πn)=1sin(2πn)+1sin(3πn)\dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}} + \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}}is
A. 7
B. 6
C. 4
D. 5

Explanation

Solution

We shift one of the values from RHS to LHS and take LCM. Use the formula of sinAsinB\sin A - \sin B in the numerator. Cancel possible terms from numerator and denominator and bring out all the terms with the same angle on one side of the equation. Take inverse function on both sides and equate the angles.

  • sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)

Complete step by step answer:
We are given the equation 1sin(πn)=1sin(2πn)+1sin(3πn)\dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}} + \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}}
We shift second term in RHS to LHS of the equation
1sin(πn)1sin(3πn)=1sin(2πn)\Rightarrow \dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} - \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
Take LCM on left hand side of the equation
sin(3πn)sin(πn)sin(3πn)sin(πn)=1sin(2πn)\Rightarrow \dfrac{{\sin \left( {\dfrac{{3\pi }}{n}} \right) - \sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
Use formula of sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) in numerator
2cos(3πn+πn2)sin(3πnπn2)sin(3πn)sin(πn)=1sin(2πn)\Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{3\pi }}{n} + \dfrac{\pi }{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{3\pi }}{n} - \dfrac{\pi }{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
2cos(4πn2)sin(2πn2)sin(3πn)sin(πn)=1sin(2πn)\Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{4\pi }}{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{2\pi }}{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
Cancel same factors from numerator and denominator in numerator of LHS
2cos(2πn)sin(πn)sin(3πn)sin(πn)=1sin(2πn)\Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
Cancel same factors from numerator and denominator of LHS
2cos(2πn)sin(3πn)=1sin(2πn)\Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}
Cross multiply the terms from RHS to LHS
2cos(2πn)sin(2πn)=sin(3πn)\Rightarrow 2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{{2\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right)
Use formula of sin2x=2sinxcosx\sin 2x = 2\sin x\cos x in LHS of the equation
sin(4πn)=sin(3πn)\Rightarrow \sin \left( {\dfrac{{4\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right) … (1)
We know the general solution for sinθ=sinα\sin \theta = \sin \alpha is given by θ=pπ+(1)pα\theta = p\pi + {( - 1)^p}\alpha where p is an integer value.
Then general solution of equation (1) is
4πn=pπ+(1)p3πn\dfrac{{4\pi }}{n} = p\pi + {( - 1)^p}\dfrac{{3\pi }}{n}
Since p is an integer it can either be even (p=2n)(p = 2n) or p can be odd(p=2n+1)(p = 2n + 1)
If p is even:
4πn=2kπ+(1)2k3πn\Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + {( - 1)^{2k}}\dfrac{{3\pi }}{n}
4πn=2kπ+3πn\Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + \dfrac{{3\pi }}{n}
Shift fraction term to LHS
4πn3πn=2kπ\Rightarrow \dfrac{{4\pi }}{n} - \dfrac{{3\pi }}{n} = 2k\pi
πn=2kπ\Rightarrow \dfrac{\pi }{n} = 2k\pi
Cancel same factors from both sides of the equation
1n=2k\Rightarrow \dfrac{1}{n} = 2k
Since n was an even number, so, this is a contradiction.
If p is odd:
4πn=(2k+1)π+(1)2k+13πn\Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi + {( - 1)^{2k + 1}}\dfrac{{3\pi }}{n}
4πn=(2k+1)π3πn\Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi - \dfrac{{3\pi }}{n}
Shift fraction term to LHS
4πn+3πn=(2k+1)π\Rightarrow \dfrac{{4\pi }}{n} + \dfrac{{3\pi }}{n} = (2k + 1)\pi
7πn=(2k+1)π\Rightarrow \dfrac{{7\pi }}{n} = (2k + 1)\pi
Cancel same factors from both sides of the equation
7n=2k+1\Rightarrow \dfrac{7}{n} = 2k + 1
Of we put k=0k = 0
7n=1\Rightarrow \dfrac{7}{n} = 1
n=7\Rightarrow n = 7 which is greater than 3
\therefore Positive integer satisfying equation is 7

\therefore Option A is correct.

Note: Many students try to solve this question by directly substituting the values of ‘n’ given in the options, keep in mind we will have to solve the equation using trigonometric formulas for each of the given values which will take a lot of time. Instead we should solve generally for the solution.