Solveeit Logo

Question

Question: The position vectors of the vertices of a quadrilateral *ABCD* are **a, b, c** and **d** respectivel...

The position vectors of the vertices of a quadrilateral ABCD are a, b, c and d respectively. Area of the quadrilateral formed by joining the middle points of its sides is

A

14a×b+b×d+d×a\frac{1}{4}|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}|

B

14b×c+c×d+a×d+b×a\frac{1}{4}|\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{a}|

C

14a×b+b×c+c×d+d×a\frac{1}{4}|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}|

D

14b×c+c×d+d×b\frac{1}{4}|\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{b}|

Answer

14a×b+b×c+c×d+d×a\frac{1}{4}|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}|

Explanation

Solution

Let P, Q, R, S be the middle points of the sides of the quadrilateral ABCD.

Position vector of P = a+b2\frac{\mathbf{a} + \mathbf{b}}{2}, that of Q=b+c2Q = \frac{\mathbf{b} + \mathbf{c}}{2}, that of

R = c+d2\frac{\mathbf{c} + \mathbf{d}}{2} and that of S = d+a2\frac{\mathbf{d} + \mathbf{a}}{2}

(c+d2)\left( \frac { \mathbf { c } + \mathbf { d } } { 2 } \right)Mid point of diagonal

SQ(d+a2+b+c2)12=14(a+b+c+d)SQ \equiv \left( \frac{\mathbf{d} + \mathbf{a}}{2} + \frac{\mathbf{b} + \mathbf{c}}{2} \right)\frac{1}{2} = \frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) Similarly mid point of PR 14(a+b+c+d)\equiv \frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d})

As the diagonals bisect each other, PQRS is a parallelogram.

SP=a+b2d+a2=bd2\overset{\rightarrow}{SP} = \frac{\mathbf{a} + \mathbf{b}}{2} - \frac{\mathbf{d} + \mathbf{a}}{2} = \frac{\mathbf{b} - \mathbf{d}}{2};

SR=c+d2d+a2=ca2\overset{\rightarrow}{SR} = \frac{\mathbf{c} + \mathbf{d}}{2} - \frac{\mathbf{d} + \mathbf{a}}{2} = \frac{\mathbf{c} - \mathbf{a}}{2}

Area of parallelogram PQRS = SP×SR=(bd2)×(ca2)|\overset{\rightarrow}{SP} \times \overset{\rightarrow}{SR}| = \left| \left( \frac{\mathbf{b} - \mathbf{d}}{2} \right) \times \left( \frac{\mathbf{c} - \mathbf{a}}{2} \right) \right|

=14b×cb×ad×c+d×a\frac{1}{4}\left| \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{d} \times \mathbf{c} + \mathbf{d} \times \mathbf{a} \right|= 14a×b+b×c+c×d+d×a\frac{1}{4}\left| \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} \right|