Solveeit Logo

Question

Question: The position vectors of the vertices A, B, C of a triangle are \(\mathbf { i } - \mathbf { j } - 3 ...

The position vectors of the vertices A, B, C of a triangle are ij3k\mathbf { i } - \mathbf { j } - 3 \mathbf { k } , 2i+j2k2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } and 5i+2j6k- 5 \mathbf { i } + 2 \mathbf { j } - 6 \mathbf { k } respectively. The length of the bisector AD of the angle BAC where D is on the segment BC, is

A

3410\frac { 3 } { 4 } \sqrt { 10 }

B

14\frac { 1 } { 4 }

C

112\frac { 11 } { 2 }

D

None of these

Answer

3410\frac { 3 } { 4 } \sqrt { 10 }

Explanation

Solution

AB=(2i+j2k)(ij3k)=i+2j+k| \overrightarrow { A B } | = | ( 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } ) - ( \mathbf { i } - \mathbf { j } - 3 \mathbf { k } ) | = | \mathbf { i } + 2 \mathbf { j } + \mathbf { k } |

= 12+22+12=6\sqrt { 1 ^ { 2 } + 2 ^ { 2 } + 1 ^ { 2 } } = \sqrt { 6 }

AC=(5i+2j6k)(ij3k)| \overrightarrow { A C } | = | ( - 5 \mathbf { i } + 2 \mathbf { j } - 6 \mathbf { k } ) - ( \mathbf { i } - \mathbf { j } - 3 \mathbf { k } ) | =6i^+3j^3k^= | - 6 \hat { \mathbf { i } } + 3 \hat { \mathbf { j } } - 3 \hat { \mathbf { k } } |

= (6)2+32+(3)2\sqrt { ( - 6 ) ^ { 2 } + 3 ^ { 2 } + ( - 3 ) ^ { 2 } }

= 54=36\sqrt { 54 } = 3 \sqrt { 6 } .

BD : DC = AB : AC = 636=13\frac { \sqrt { 6 } } { 3 \sqrt { 6 } } = \frac { 1 } { 3 }.

\therefore Position vector of D =

= 14(i+5j12k)\frac { 1 } { 4 } ( \mathbf { i } + 5 \mathbf { j } - 12 \mathbf { k } )

\therefore AD=\overrightarrow { A D } = position vector of D – Position vector of

A = 14(i+5j12k)(ij3k)\frac { 1 } { 4 } ( \mathbf { i } + 5 \mathbf { j } - 12 \mathbf { k } ) - ( \mathbf { i } - \mathbf { j } - 3 \mathbf { k } ) = 14(3i+9j)=34(i+3j)\frac { 1 } { 4 } ( - 3 \mathbf { i } + 9 \mathbf { j } ) = \frac { 3 } { 4 } ( - \mathbf { i } + 3 \mathbf { j } )

AD=34(1)2+32=3410| \overrightarrow { A D } | = \frac { 3 } { 4 } \sqrt { ( - 1 ) ^ { 2 } + 3 ^ { 2 } } = \frac { 3 } { 4 } \sqrt { 10 }