Question
Question: The position vectors of the vertices A, B, C of a triangle are \(\mathbf { i } - \mathbf { j } - 3 ...
The position vectors of the vertices A, B, C of a triangle are i−j−3k , 2i+j−2k and −5i+2j−6k respectively. The length of the bisector AD of the angle BAC where D is on the segment BC, is
A
4310
B
41
C
211
D
None of these
Answer
4310
Explanation
Solution
∣AB∣=∣(2i+j−2k)−(i−j−3k)∣=∣i+2j+k∣
= 12+22+12=6
∣AC∣=∣(−5i+2j−6k)−(i−j−3k)∣ =∣−6i^+3j^−3k^∣
= (−6)2+32+(−3)2
= 54=36 .
BD : DC = AB : AC = 366=31.
∴ Position vector of D =
= 41(i+5j−12k)
∴ AD= position vector of D – Position vector of
A = 41(i+5j−12k)−(i−j−3k) = 41(−3i+9j)=43(−i+3j)
∣AD∣=43(−1)2+32=4310
