Solveeit Logo

Question

Question: The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i}+\hat{j}+\hat{k}, ...

The position vectors of the vertices A, B and C of a tetrahedron ABCD are i^+j^+k^,i^,and3i^\hat{i}+\hat{j}+\hat{k}, \hat{i}, and 3\hat{i} respectively. The altitude form vertex D to the opposite face ABC meets the median line through A of the triangle ABC at a point E. If the length of edge AD is 4 units and volume of tetrahedron is 223\frac{2\sqrt{2}}{3} units, then the possible position vectors (s) of point E is/are

A

i^+3j^+3k^-\hat{i}+3\hat{j}+3\hat{k}

B

2j^+2k^2\hat{j}+2\hat{k}

C

3i^+j^+k^3\hat{i}+\hat{j}+\hat{k}

D

3i^j^k^3\hat{i}-\hat{j}-\hat{k}

Answer

(A), (D)

Explanation

Solution

Let the position vectors of the vertices A, B, C, and D be a,b,c,andd\vec{a}, \vec{b}, \vec{c}, and \vec{d} respectively.

Given: a=i^+j^+k^\vec{a} = \hat{i}+\hat{j}+\hat{k} b=i^\vec{b} = \hat{i} c=3i^\vec{c} = 3\hat{i} Let d=xi^+yj^+zk^\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}.

The length of edge AD is 4 units: da=4    (x1)i^+(y1)j^+(z1)k^=4|\vec{d} - \vec{a}| = 4 \implies |(x-1)\hat{i} + (y-1)\hat{j} + (z-1)\hat{k}| = 4 (x1)2+(y1)2+(z1)2=16(x-1)^2 + (y-1)^2 + (z-1)^2 = 16 (Equation 1)

The volume of the tetrahedron ABCD is 223\frac{2\sqrt{2}}{3}. The volume is given by V=16(ba)×(ca)(da)V = \frac{1}{6} |(\vec{b}-\vec{a}) \times (\vec{c}-\vec{a}) \cdot (\vec{d}-\vec{a})|. AB=ba=i^(i^+j^+k^)=j^k^\vec{AB} = \vec{b} - \vec{a} = \hat{i} - (\hat{i}+\hat{j}+\hat{k}) = -\hat{j}-\hat{k} AC=ca=3i^(i^+j^+k^)=2i^j^k^\vec{AC} = \vec{c} - \vec{a} = 3\hat{i} - (\hat{i}+\hat{j}+\hat{k}) = 2\hat{i}-\hat{j}-\hat{k} AB×AC=(j^k^)×(2i^j^k^)=2(j^×i^)(j^×j^)(j^×k^)(k^×2i^)(k^×j^)(k^×k^)\vec{AB} \times \vec{AC} = (-\hat{j}-\hat{k}) \times (2\hat{i}-\hat{j}-\hat{k}) = -2(\hat{j} \times \hat{i}) - (\hat{j} \times -\hat{j}) - (\hat{j} \times -\hat{k}) - (\hat{k} \times 2\hat{i}) - (\hat{k} \times -\hat{j}) - (\hat{k} \times -\hat{k}) =2(k^)0(i^)2j^i^0=2k^+i^2j^i^=2j^+2k^= -2(-\hat{k}) - \vec{0} - (-\hat{i}) - 2\hat{j} - \hat{i} - \vec{0} = 2\hat{k} + \hat{i} - 2\hat{j} - \hat{i} = -2\hat{j} + 2\hat{k}. AD=da=(x1)i^+(y1)j^+(z1)k^\vec{AD} = \vec{d} - \vec{a} = (x-1)\hat{i} + (y-1)\hat{j} + (z-1)\hat{k}. (AB×AC)AD=(2j^+2k^)((x1)i^+(y1)j^+(z1)k^)=2(y1)+2(z1)=2z2y(\vec{AB} \times \vec{AC}) \cdot \vec{AD} = (-2\hat{j} + 2\hat{k}) \cdot ((x-1)\hat{i} + (y-1)\hat{j} + (z-1)\hat{k}) = -2(y-1) + 2(z-1) = 2z - 2y. V=162z2y=13zyV = \frac{1}{6} |2z - 2y| = \frac{1}{3} |z - y|. Given V=223V = \frac{2\sqrt{2}}{3}, so 13zy=223    zy=22\frac{1}{3} |z - y| = \frac{2\sqrt{2}}{3} \implies |z - y| = 2\sqrt{2}. Thus, zy=22z - y = 2\sqrt{2} or zy=22z - y = -2\sqrt{2}. (Equation 2)

The altitude from D to face ABC is a line through D perpendicular to the plane ABC. The direction vector of this altitude is parallel to the normal vector of the plane ABC, which is N=AB×AC=2j^+2k^\vec{N} = \vec{AB} \times \vec{AC} = -2\hat{j} + 2\hat{k}. The equation of the plane ABC is (ra)N=0(\vec{r} - \vec{a}) \cdot \vec{N} = 0. (r(i^+j^+k^))(2j^+2k^)=0(\vec{r} - (\hat{i}+\hat{j}+\hat{k})) \cdot (-2\hat{j} + 2\hat{k}) = 0. Let r=xi^+yj^+zk^\vec{r} = x'\hat{i} + y'\hat{j} + z'\hat{k}. ((x1)i^+(y1)j^+(z1)k^)(2j^+2k^)=0    2(y1)+2(z1)=0    y1=z1    y=z((x'-1)\hat{i} + (y'-1)\hat{j} + (z'-1)\hat{k}) \cdot (-2\hat{j} + 2\hat{k}) = 0 \implies -2(y'-1) + 2(z'-1) = 0 \implies y'-1 = z'-1 \implies y' = z'. The equation of the plane ABC is y=zy=z.

The point E lies on the altitude from D. So, e=d+kN=(xi^+yj^+zk^)+k(2j^+2k^)=xi^+(y2k)j^+(z+2k)k^\vec{e} = \vec{d} + k\vec{N} = (x\hat{i} + y\hat{j} + z\hat{k}) + k(-2\hat{j} + 2\hat{k}) = x\hat{i} + (y-2k)\hat{j} + (z+2k)\hat{k} for some scalar kk.

The point E also lies on the median line through A of triangle ABC. Let M be the midpoint of BC. m=b+c2=i^+3i^2=2i^\vec{m} = \frac{\vec{b}+\vec{c}}{2} = \frac{\hat{i} + 3\hat{i}}{2} = 2\hat{i}. The median line through A is the line AM. The direction vector of AM is AM=ma=2i^(i^+j^+k^)=i^j^k^\vec{AM} = \vec{m} - \vec{a} = 2\hat{i} - (\hat{i}+\hat{j}+\hat{k}) = \hat{i}-\hat{j}-\hat{k}. The position vector of a point on the line AM is rAM=a+λAM=(i^+j^+k^)+λ(i^j^k^)=(1+λ)i^+(1λ)j^+(1λ)k^\vec{r}_{AM} = \vec{a} + \lambda \vec{AM} = (\hat{i}+\hat{j}+\hat{k}) + \lambda (\hat{i}-\hat{j}-\hat{k}) = (1+\lambda)\hat{i} + (1-\lambda)\hat{j} + (1-\lambda)\hat{k} for some scalar λ\lambda.

Since E lies on both lines, its position vector e\vec{e} must satisfy both forms: xi^+(y2k)j^+(z+2k)k^=(1+λ)i^+(1λ)j^+(1λ)k^x\hat{i} + (y-2k)\hat{j} + (z+2k)\hat{k} = (1+\lambda)\hat{i} + (1-\lambda)\hat{j} + (1-\lambda)\hat{k}. Equating coefficients: x=1+λx = 1+\lambda (3) y2k=1λy-2k = 1-\lambda (4) z+2k=1λz+2k = 1-\lambda (5)

From (4) and (5): y2k=z+2k    yz=4k    k=yz4y-2k = z+2k \implies y-z = 4k \implies k = \frac{y-z}{4}. From (4) and (5): 1λ=y2k=y2(yz4)=yyz2=2yy+z2=y+z21-\lambda = y-2k = y - 2\left(\frac{y-z}{4}\right) = y - \frac{y-z}{2} = \frac{2y-y+z}{2} = \frac{y+z}{2}. So, 1λ=y+z21-\lambda = \frac{y+z}{2}. (6) From (3), λ=x1\lambda = x-1. Substitute into (6): 1(x1)=y+z2    2x=y+z2    42x=y+z1-(x-1) = \frac{y+z}{2} \implies 2-x = \frac{y+z}{2} \implies 4-2x = y+z. (7)

We have a system of equations for x, y, z: (1) (x1)2+(y1)2+(z1)2=16(x-1)^2 + (y-1)^2 + (z-1)^2 = 16 (2) zy=22|z-y| = 2\sqrt{2} (7) y+z=42xy+z = 4-2x

Case 1: zy=22z-y = 2\sqrt{2}. Adding (2) and (7): 2z=42x+22    z=2x+22z = 4-2x+2\sqrt{2} \implies z = 2-x+\sqrt{2}. Subtracting (2) from (7): 2y=42x22    y=2x22y = 4-2x-2\sqrt{2} \implies y = 2-x-\sqrt{2}. Substitute y and z into (1): (x1)2+((2x2)1)2+((2x+2)1)2=16(x-1)^2 + ((2-x-\sqrt{2})-1)^2 + ((2-x+\sqrt{2})-1)^2 = 16 (x1)2+(1x2)2+(1x+2)2=16(x-1)^2 + (1-x-\sqrt{2})^2 + (1-x+\sqrt{2})^2 = 16 Let u=1xu = 1-x. ((1x))2+(u2)2+(u+2)2=16(-(1-x))^2 + (u-\sqrt{2})^2 + (u+\sqrt{2})^2 = 16 u2+(u222u+2)+(u2+22u+2)=16u^2 + (u^2 - 2\sqrt{2}u + 2) + (u^2 + 2\sqrt{2}u + 2) = 16 3u2+4=16    3u2=12    u2=4    u=±23u^2 + 4 = 16 \implies 3u^2 = 12 \implies u^2 = 4 \implies u = \pm 2. If u=2u=2, 1x=2    x=11-x=2 \implies x=-1. Then y=2(1)2=32y = 2-(-1)-\sqrt{2} = 3-\sqrt{2}, z=2(1)+2=3+2z = 2-(-1)+\sqrt{2} = 3+\sqrt{2}. If u=2u=-2, 1x=2    x=31-x=-2 \implies x=3. Then y=232=12y = 2-3-\sqrt{2} = -1-\sqrt{2}, z=23+2=1+2z = 2-3+\sqrt{2} = -1+\sqrt{2}.

Case 2: zy=22z-y = -2\sqrt{2}. Adding (2) and (7): 2z=42x22    z=2x22z = 4-2x-2\sqrt{2} \implies z = 2-x-\sqrt{2}. Subtracting (2) from (7): 2y=42x+22    y=2x+22y = 4-2x+2\sqrt{2} \implies y = 2-x+\sqrt{2}. Substitute y and z into (1): (x1)2+((2x+2)1)2+((2x2)1)2=16(x-1)^2 + ((2-x+\sqrt{2})-1)^2 + ((2-x-\sqrt{2})-1)^2 = 16 (x1)2+(1x+2)2+(1x2)2=16(x-1)^2 + (1-x+\sqrt{2})^2 + (1-x-\sqrt{2})^2 = 16 This is the same equation as in Case 1, 3u2+4=163u^2 + 4 = 16, which gives u=±2u = \pm 2. If u=2u=2, 1x=2    x=11-x=2 \implies x=-1. Then y=2(1)+2=3+2y = 2-(-1)+\sqrt{2} = 3+\sqrt{2}, z=2(1)2=32z = 2-(-1)-\sqrt{2} = 3-\sqrt{2}. If u=2u=-2, 1x=2    x=31-x=-2 \implies x=3. Then y=23+2=1+2y = 2-3+\sqrt{2} = -1+\sqrt{2}, z=232=12z = 2-3-\sqrt{2} = -1-\sqrt{2}.

So, the possible position vectors for D are: D1:x=1,y=32,z=3+2D_1: x=-1, y=3-\sqrt{2}, z=3+\sqrt{2} D2:x=3,y=12,z=1+2D_2: x=3, y=-1-\sqrt{2}, z=-1+\sqrt{2} D3:x=1,y=3+2,z=32D_3: x=-1, y=3+\sqrt{2}, z=3-\sqrt{2} D4:x=3,y=1+2,z=12D_4: x=3, y=-1+\sqrt{2}, z=-1-\sqrt{2}

Now we find the position vector of E, e=(1+λ)i^+(1λ)j^+(1λ)k^\vec{e} = (1+\lambda)\hat{i} + (1-\lambda)\hat{j} + (1-\lambda)\hat{k}, where λ=x1\lambda = x-1. For D1D_1: x=1    λ=11=2x=-1 \implies \lambda = -1-1 = -2. e1=(12)i^+(1(2))j^+(1(2))k^=i^+3j^+3k^\vec{e}_1 = (1-2)\hat{i} + (1-(-2))\hat{j} + (1-(-2))\hat{k} = -\hat{i} + 3\hat{j} + 3\hat{k}. For D2D_2: x=3    λ=31=2x=3 \implies \lambda = 3-1 = 2. e2=(1+2)i^+(12)j^+(12)k^=3i^j^k^\vec{e}_2 = (1+2)\hat{i} + (1-2)\hat{j} + (1-2)\hat{k} = 3\hat{i} - \hat{j} - \hat{k}. For D3D_3: x=1    λ=11=2x=-1 \implies \lambda = -1-1 = -2. e3=(12)i^+(1(2))j^+(1(2))k^=i^+3j^+3k^\vec{e}_3 = (1-2)\hat{i} + (1-(-2))\hat{j} + (1-(-2))\hat{k} = -\hat{i} + 3\hat{j} + 3\hat{k}. For D4D_4: x=3    λ=31=2x=3 \implies \lambda = 3-1 = 2. e4=(1+2)i^+(12)j^+(12)k^=3i^j^k^\vec{e}_4 = (1+2)\hat{i} + (1-2)\hat{j} + (1-2)\hat{k} = 3\hat{i} - \hat{j} - \hat{k}.

The possible position vectors of point E are i^+3j^+3k^-\hat{i} + 3\hat{j} + 3\hat{k} and 3i^j^k^3\hat{i} - \hat{j} - \hat{k}.

Comparing these with the given options: (A) i^+3j^+3k^-\hat{i}+3\hat{j}+3\hat{k} - Matches one of the possible position vectors. (B) 2j^+2k^2\hat{j}+2\hat{k} - Does not match. (C) 3i^+j^+k^3\hat{i}+\hat{j}+\hat{k} - Does not match. (D) 3i^j^k^3\hat{i}-\hat{j}-\hat{k} - Matches one of the possible position vectors.

Both options (A) and (D) are possible position vectors for point E.