Question
Question: The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i}+\hat{j}+\hat{k}, ...
The position vectors of the vertices A, B and C of a tetrahedron ABCD are i^+j^+k^,i^,and3i^ respectively. The altitude form vertex D to the opposite face ABC meets the median line through A of the triangle ABC at a point E. If the length of edge AD is 4 units and volume of tetrahedron is 322 units, then the possible position vectors (s) of point E is/are

−i^+3j^+3k^
2j^+2k^
3i^+j^+k^
3i^−j^−k^
(A), (D)
Solution
Let the position vectors of the vertices A, B, C, and D be a,b,c,andd respectively.
Given: a=i^+j^+k^ b=i^ c=3i^ Let d=xi^+yj^+zk^.
The length of edge AD is 4 units: ∣d−a∣=4⟹∣(x−1)i^+(y−1)j^+(z−1)k^∣=4 (x−1)2+(y−1)2+(z−1)2=16 (Equation 1)
The volume of the tetrahedron ABCD is 322. The volume is given by V=61∣(b−a)×(c−a)⋅(d−a)∣. AB=b−a=i^−(i^+j^+k^)=−j^−k^ AC=c−a=3i^−(i^+j^+k^)=2i^−j^−k^ AB×AC=(−j^−k^)×(2i^−j^−k^)=−2(j^×i^)−(j^×−j^)−(j^×−k^)−(k^×2i^)−(k^×−j^)−(k^×−k^) =−2(−k^)−0−(−i^)−2j^−i^−0=2k^+i^−2j^−i^=−2j^+2k^. AD=d−a=(x−1)i^+(y−1)j^+(z−1)k^. (AB×AC)⋅AD=(−2j^+2k^)⋅((x−1)i^+(y−1)j^+(z−1)k^)=−2(y−1)+2(z−1)=2z−2y. V=61∣2z−2y∣=31∣z−y∣. Given V=322, so 31∣z−y∣=322⟹∣z−y∣=22. Thus, z−y=22 or z−y=−22. (Equation 2)
The altitude from D to face ABC is a line through D perpendicular to the plane ABC. The direction vector of this altitude is parallel to the normal vector of the plane ABC, which is N=AB×AC=−2j^+2k^. The equation of the plane ABC is (r−a)⋅N=0. (r−(i^+j^+k^))⋅(−2j^+2k^)=0. Let r=x′i^+y′j^+z′k^. ((x′−1)i^+(y′−1)j^+(z′−1)k^)⋅(−2j^+2k^)=0⟹−2(y′−1)+2(z′−1)=0⟹y′−1=z′−1⟹y′=z′. The equation of the plane ABC is y=z.
The point E lies on the altitude from D. So, e=d+kN=(xi^+yj^+zk^)+k(−2j^+2k^)=xi^+(y−2k)j^+(z+2k)k^ for some scalar k.
The point E also lies on the median line through A of triangle ABC. Let M be the midpoint of BC. m=2b+c=2i^+3i^=2i^. The median line through A is the line AM. The direction vector of AM is AM=m−a=2i^−(i^+j^+k^)=i^−j^−k^. The position vector of a point on the line AM is rAM=a+λAM=(i^+j^+k^)+λ(i^−j^−k^)=(1+λ)i^+(1−λ)j^+(1−λ)k^ for some scalar λ.
Since E lies on both lines, its position vector e must satisfy both forms: xi^+(y−2k)j^+(z+2k)k^=(1+λ)i^+(1−λ)j^+(1−λ)k^. Equating coefficients: x=1+λ (3) y−2k=1−λ (4) z+2k=1−λ (5)
From (4) and (5): y−2k=z+2k⟹y−z=4k⟹k=4y−z. From (4) and (5): 1−λ=y−2k=y−2(4y−z)=y−2y−z=22y−y+z=2y+z. So, 1−λ=2y+z. (6) From (3), λ=x−1. Substitute into (6): 1−(x−1)=2y+z⟹2−x=2y+z⟹4−2x=y+z. (7)
We have a system of equations for x, y, z: (1) (x−1)2+(y−1)2+(z−1)2=16 (2) ∣z−y∣=22 (7) y+z=4−2x
Case 1: z−y=22. Adding (2) and (7): 2z=4−2x+22⟹z=2−x+2. Subtracting (2) from (7): 2y=4−2x−22⟹y=2−x−2. Substitute y and z into (1): (x−1)2+((2−x−2)−1)2+((2−x+2)−1)2=16 (x−1)2+(1−x−2)2+(1−x+2)2=16 Let u=1−x. (−(1−x))2+(u−2)2+(u+2)2=16 u2+(u2−22u+2)+(u2+22u+2)=16 3u2+4=16⟹3u2=12⟹u2=4⟹u=±2. If u=2, 1−x=2⟹x=−1. Then y=2−(−1)−2=3−2, z=2−(−1)+2=3+2. If u=−2, 1−x=−2⟹x=3. Then y=2−3−2=−1−2, z=2−3+2=−1+2.
Case 2: z−y=−22. Adding (2) and (7): 2z=4−2x−22⟹z=2−x−2. Subtracting (2) from (7): 2y=4−2x+22⟹y=2−x+2. Substitute y and z into (1): (x−1)2+((2−x+2)−1)2+((2−x−2)−1)2=16 (x−1)2+(1−x+2)2+(1−x−2)2=16 This is the same equation as in Case 1, 3u2+4=16, which gives u=±2. If u=2, 1−x=2⟹x=−1. Then y=2−(−1)+2=3+2, z=2−(−1)−2=3−2. If u=−2, 1−x=−2⟹x=3. Then y=2−3+2=−1+2, z=2−3−2=−1−2.
So, the possible position vectors for D are: D1:x=−1,y=3−2,z=3+2 D2:x=3,y=−1−2,z=−1+2 D3:x=−1,y=3+2,z=3−2 D4:x=3,y=−1+2,z=−1−2
Now we find the position vector of E, e=(1+λ)i^+(1−λ)j^+(1−λ)k^, where λ=x−1. For D1: x=−1⟹λ=−1−1=−2. e1=(1−2)i^+(1−(−2))j^+(1−(−2))k^=−i^+3j^+3k^. For D2: x=3⟹λ=3−1=2. e2=(1+2)i^+(1−2)j^+(1−2)k^=3i^−j^−k^. For D3: x=−1⟹λ=−1−1=−2. e3=(1−2)i^+(1−(−2))j^+(1−(−2))k^=−i^+3j^+3k^. For D4: x=3⟹λ=3−1=2. e4=(1+2)i^+(1−2)j^+(1−2)k^=3i^−j^−k^.
The possible position vectors of point E are −i^+3j^+3k^ and 3i^−j^−k^.
Comparing these with the given options: (A) −i^+3j^+3k^ - Matches one of the possible position vectors. (B) 2j^+2k^ - Does not match. (C) 3i^+j^+k^ - Does not match. (D) 3i^−j^−k^ - Matches one of the possible position vectors.
Both options (A) and (D) are possible position vectors for point E.