Question
Mathematics Question on Vector Algebra
The position vectors of the vertices A,B and C of a triangle are 2i−3j+3k,2i+2j+3kand−i+j+3k respectively. Let l denote the length of the angle bisector AD of ∠BAC where D is on the line segment BC. Then 2l2 equals:
49
42
50
45
45
Solution
First, find the lengths of AB and AC:
AB=B−A=(2−2)i^+(2+3)j^+(3−3)k^=0i^+5j^+0k^.
∣AB∣=02+52+02=5.
AC=C−A=(−1−2)i^+(1+3)j^+(3−3)k^=−3i^+4j^+0k^.
∣AC∣=(−3)2+42+02=5.
Since AB=AC, triangle ABC is isosceles. The midpoint D of BC is given by:
D=2B+C=2(2i^+2j^+3k^)+(−i^+3j^+3k^)=2i^+5j^+6k^=21i^+25j^+3k^.
The length of the angle bisector ℓ is given by:
ℓ=∣A−D∣=2i^−3j^−3k^−(21i^+25j^+3k^).
ℓ=23i^−29j^−29k^=(23)2+(−29)2+(−29)2.
ℓ=49+481+481=4171=245.
Calculating 2ℓ2:
2ℓ2=2×(245)2=45.
The Correct answer is: 45