Solveeit Logo

Question

Mathematics Question on Vector Algebra

The position vectors of the vertices A,BA, B and CC of a triangle are 2i3j+3k,2i+2j+3kandi+j+3k2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}, \quad 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \quad \text{and} \quad -\mathbf{i} + \mathbf{j} + 3\mathbf{k} respectively. Let ll denote the length of the angle bisector ADAD of BAC\angle BAC where DD is on the line segment BCBC. Then 2l22l^2 equals:

A

49

B

42

C

50

D

45

Answer

45

Explanation

Solution

First, find the lengths of ABAB and ACAC:
AB=BA=(22)i^+(2+3)j^+(33)k^=0i^+5j^+0k^.\vec{AB} = \vec{B} - \vec{A} = (2 - 2)\hat{i} + (2 + 3)\hat{j} + (3 - 3)\hat{k} = 0\hat{i} + 5\hat{j} + 0\hat{k}.

AB=02+52+02=5.|\vec{AB}| = \sqrt{0^2 + 5^2 + 0^2} = 5.

AC=CA=(12)i^+(1+3)j^+(33)k^=3i^+4j^+0k^.\vec{AC} = \vec{C} - \vec{A} = (-1 - 2)\hat{i} + (1 + 3)\hat{j} + (3 - 3)\hat{k} = -3\hat{i} + 4\hat{j} + 0\hat{k}.

AC=(3)2+42+02=5.|\vec{AC}| = \sqrt{(-3)^2 + 4^2 + 0^2} = 5.

Since AB=ACAB = AC, triangle ABCABC is isosceles. The midpoint DD of BCBC is given by:

D=B+C2=(2i^+2j^+3k^)+(i^+3j^+3k^)2=i^+5j^+6k^2=12i^+52j^+3k^.\vec{D} = \frac{\vec{B} + \vec{C}}{2} = \frac{(2\hat{i} + 2\hat{j} + 3\hat{k}) + (-\hat{i} + 3\hat{j} + 3\hat{k})}{2} = \frac{\hat{i} + 5\hat{j} + 6\hat{k}}{2} = \frac{1}{2}\hat{i} + \frac{5}{2}\hat{j} + 3\hat{k}.

The length of the angle bisector \ell is given by:

=AD=2i^3j^3k^(12i^+52j^+3k^).\ell = |\vec{A} - \vec{D}| = \left|2\hat{i} - 3\hat{j} - 3\hat{k} - \left(\frac{1}{2}\hat{i} + \frac{5}{2}\hat{j} + 3\hat{k}\right)\right|.

=32i^92j^92k^=(32)2+(92)2+(92)2.\ell = \left|\frac{3}{2}\hat{i} - \frac{9}{2}\hat{j} - \frac{9}{2}\hat{k}\right| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{9}{2}\right)^2 + \left(-\frac{9}{2}\right)^2}.

=94+814+814=1714=452.\ell = \sqrt{\frac{9}{4} + \frac{81}{4} + \frac{81}{4}} = \sqrt{\frac{171}{4}} = \frac{\sqrt{45}}{2}.

Calculating 222\ell^2:
22=2×(452)2=45.2\ell^2 = 2 \times \left(\frac{\sqrt{45}}{2}\right)^2 = 45.

The Correct answer is: 45