Question
Question: The position vectors of the points A, B, C are \((2\mathbf{i} + \mathbf{j} - \mathbf{k}),\) \((3\ma...
The position vectors of the points A, B, C are (2i+j−k),
(3i−2j+k) and (i+4j−3k) respectively. These points
A
Form an isosceles triangle
B
Form a right-angled triangle
C
Are collinear
D
Form a scalene triangle
Answer
Are collinear
Explanation
Solution
AB→=(3−2)i+(−2−1)j+(1+1)k=i−3j+2k
r=∣b×(c×a)∣b×(c×a)
CA→=(2−1)i+(1−4)j+(−1+3)k=i−3j−2k
∣AB→∣=1+9+4=14
∣BC→∣=4+36+16=56=214
∣CA→∣=1+9+4=14
So, ∣AB→∣+∣AC→∣=∣BC→∣ and angle between AB and BC is 180°.
∴ Points A, B, C can not form an isosceles triangle.
Hence A, B, C are collinear.