Solveeit Logo

Question

Question: The position vectors of the points A, B, C are \((2\mathbf{i} + \mathbf{j} - \mathbf{k}),\) \((3\ma...

The position vectors of the points A, B, C are (2i+jk),(2\mathbf{i} + \mathbf{j} - \mathbf{k}),

(3i2j+k)(3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) and (i+4j3k)(\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) respectively. These points

A

Form an isosceles triangle

B

Form a right-angled triangle

C

Are collinear

D

Form a scalene triangle

Answer

Are collinear

Explanation

Solution

AB=(32)i+(21)j+(1+1)k=i3j+2k\overset{\rightarrow}{AB} = (3 - 2)\mathbf{i} + ( - 2 - 1)\mathbf{j} + (1 + 1)\mathbf{k} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k}

r=b×(c×a)b×(c×a)\mathbf{r} = \frac{\mathbf{b} \times (\mathbf{c} \times \mathbf{a})}{|\mathbf{b} \times (\mathbf{c} \times \mathbf{a})|}

CA=(21)i+(14)j+(1+3)k=i3j2k\overset{\rightarrow}{CA} = (2 - 1)\mathbf{i} + (1 - 4)\mathbf{j} + ( - 1 + 3)\mathbf{k} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}

AB=1+9+4=14|\overset{\rightarrow}{AB}| = \sqrt{1 + 9 + 4} = \sqrt{14}

BC=4+36+16=56=214|\overset{\rightarrow}{BC}| = \sqrt{4 + 36 + 16} = \sqrt{56} = 2\sqrt{14}

CA=1+9+4=14|\overset{\rightarrow}{CA}| = \sqrt{1 + 9 + 4} = \sqrt{14}

So, AB+AC=BC|\overset{\rightarrow}{AB}| + |\overset{\rightarrow}{AC}| = |\overset{\rightarrow}{BC}| and angle between AB and BC is 180°.

∴ Points A, B, C can not form an isosceles triangle.

Hence A, B, C are collinear.