Question
Question: The position vectors of radius are \(2\widehat{i} + \widehat{j} + \widehat{k}\) and \(2\widehat{i} -...
The position vectors of radius are 2i+j+k and 2i−3j+k while those of linear momentum are 2i+3j−k. Then the angular momentum is :
A
2i−4k
B
4i−8k
C
2i−4j+2k
D
4i−8k
Answer
4i−8k
Explanation
Solution
Radius vector
r=r2→−r1→=(2i−3j+k)−(2i+j+k)
∴ r=−4j
Linear momentum p→=2i+3j−k
L=r×p=(−4j)×(2i+3j−k)
\widehat{i} & \widehat{j} & \widehat{k} \\ 0 & - 4 & 0 \\ 2 & 3 & - 1 \end{matrix} \right| = 4\widehat{i} - 8\widehat{k}$$