Solveeit Logo

Question

Question: The position vectors of points A, B, C and D are \(A = 3\widehat{i} + 4\widehat{j} + 5\widehat{k},B...

The position vectors of points A, B, C and D are

A=3i^+4j^+5k^,B=4i^+5j^+6k^,C=7i^+9j^+3k^A = 3\widehat{i} + 4\widehat{j} + 5\widehat{k},B = 4\widehat{i} + 5\widehat{j} + 6\widehat{k},C = 7\widehat{i} + 9\widehat{j} + 3\widehat{k} and

D=4i^+6j^D = 4\widehat{i} + 6\widehat{j} then the displacement vectors AB and CD are

A

Perpendicular

B

Parallel

C

Antiparallel

D

Inclined at an angle of 60°

Answer

Inclined at an angle of 60°

Explanation

Solution

AB=(4i^+5j^+6k^)(3i^+4j^+5k^)\overset{\rightarrow}{AB} = (4\widehat{i} + 5\widehat{j} + 6\widehat{k}) - (3\widehat{i} + 4\widehat{j} + 5\widehat{k}) =i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k}

CD=(4i^+6j^)(7i^+9j^+3k^)\overset{\rightarrow}{CD} = (4\widehat{i} + 6\widehat{j}) - (7\widehat{i} + 9\widehat{j} + 3\widehat{k}) =3i^3j^3k^= - 3\widehat{i} - 3\widehat{j} - 3\widehat{k}

AB\overset{\rightarrow}{AB} and CD\overset{\rightarrow}{CD} are parallel, because its cross-products is 0.