Solveeit Logo

Question

Question: The position vectors of points A and B are \(\mathbf{i} - \mathbf{j} + 3\mathbf{k}\) and \(3\mathbf{...

The position vectors of points A and B are ij+3k\mathbf{i} - \mathbf{j} + 3\mathbf{k} and 3i+3j+3k3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} respectively. The equation of a plane is r.(5i+2j7k)+9=0\mathbf{r}.(5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9 = 0. The points A and B

A

Lie on the plane

B

Are on the same side of the plane

C

Are on the opposite side of the plane

D

None of these

Answer

Are on the opposite side of the plane

Explanation

Solution

The position vectors of two given points are a=ij+3k\mathbf{a} = \mathbf{i} - \mathbf{j} + 3\mathbf{k} and b=3i+3j+3k\mathbf{b} = 3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} the equation of the given plane is r.(5i+2j7k)+9=0\mathbf{r}.(5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9 = 0 or r.n+d=0\mathbf{r}.\mathbf{n} + d = 0.

We have, a.n+d=(ij+3k).(5i+2j7k)+9\mathbf{a}.\mathbf{n} + d = (\mathbf{i} - \mathbf{j} + 3\mathbf{k}).(5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9

=5221+9<0= 5 - 2 - 21 + 9 < 0

and, b.n+d=(3i+3j+3k).(5i+2j7k)+9\mathbf{b}.\mathbf{n} + d = (3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}).(5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9

=15+621+9>0= 15 + 6 - 21 + 9 > 0

So, the points a and b\mathbf{b}are on the opposite sides of the plane.