Solveeit Logo

Question

Physics Question on work, energy and power

The position vector of the particle is r(t)=acosωti^+asinωtj^\vec{r} (t) = a \, \cos \omega t \hat{i} + a \, \sin \, \omega t \, \hat{j}, where aa and ω\omega are real constants of suitable dimensions. The acceleration is

A

perpendicular to the velocity

B

parallel to the velocity

C

directed away from the origin

D

perpendicular to the position vector

Answer

perpendicular to the velocity

Explanation

Solution

Given that, r(t)=acosωti^+asinωtj^r (t)=a \cos \omega t \hat{ i }+a \sin \omega t \hat{ j }
v=dr(t)dt=aωsinωti^+aωcosωtj^\because v =\frac{d r (t)}{d t}=-a \omega \sin \omega t \hat{ i }+a \omega \cos \omega t \hat{ j }
a=dvdt=aω2cosωti^aω2sinωtj^a =\frac{d v}{d t}=-a \omega^{2} \cos \omega t \hat{ i }-a \omega^{2} \sin \omega t \hat{ j }
av=(aωsinωti^+aωcosωtj^)\because a \cdot v =(-a \omega \sin \omega t \hat{ i }+a \omega \cos \omega t \hat{ j })
(aω2cosωti^aω2sinωtj^)\left(-a \omega^{2} \cos \omega t \hat{ i }-a \omega^{2} \sin \omega t \hat{ j }\right)
av=a2ω3sinωtcosωta2ω3sinωtcosωta \cdot v =a^{2} \omega^{3} \sin \omega t \cos \omega t-a^{2} \omega^{3} \sin \omega t \cos \omega t
av=0[av=avcosθ]\Rightarrow a \cdot v =0[\because a \cdot v =| a \| v | \cos \theta]
Above result implies that acceleration is perpendicular to velocity.