Solveeit Logo

Question

Question: The position vector of the particle at 't' s is given by $\overrightarrow{r} = (t\hat{i} - \frac{t^2...

The position vector of the particle at 't' s is given by r=(ti^t22j^)\overrightarrow{r} = (t\hat{i} - \frac{t^2}{2}\hat{j}) m. Then which of the following statements are correct?

A

The average speed of the particle in the time interval from t = 0 s to t=2s is 25+ln(2+5)4\frac{2\sqrt{5} + ln(2 + \sqrt{5})}{4} m/s

B

The magnitude of average velocity of the particle in the time interval from t=0 s to t= 2s is 2\sqrt{2} m/s

C

The magnitude of instantaneous acceleration of the particle at t = 2s is 1m/s21m/s^2

D

The instantaneous speed of the particle at 2s, is 5\sqrt{5} m/s

Answer

All options A, B, C, D are correct.

Explanation

Solution

The position vector of the particle is given by r=(ti^t22j^)\overrightarrow{r} = (t\hat{i} - \frac{t^2}{2}\hat{j}) m.

First, let's find the velocity and acceleration vectors. The instantaneous velocity vector is the derivative of the position vector with respect to time: v=drdt=ddt(ti^t22j^)=(1i^2t2j^)=(i^tj^)\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \frac{d}{dt}(t\hat{i} - \frac{t^2}{2}\hat{j}) = (1\hat{i} - \frac{2t}{2}\hat{j}) = (\hat{i} - t\hat{j}) m/s.

The instantaneous acceleration vector is the derivative of the velocity vector with respect to time: a=dvdt=ddt(i^tj^)=(0i^1j^)=j^\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = \frac{d}{dt}(\hat{i} - t\hat{j}) = (0\hat{i} - 1\hat{j}) = -\hat{j} m/s2^2.

Now let's evaluate each statement:

A) The average speed of the particle in the time interval from t = 0 s to t=2s is 25+ln(2+5)4\frac{2\sqrt{5} + ln(2 + \sqrt{5})}{4} m/s Average speed is total distance traveled divided by total time. The instantaneous speed is the magnitude of the velocity vector: v=12+(t)2=1+t2|\overrightarrow{v}| = \sqrt{1^2 + (-t)^2} = \sqrt{1 + t^2}. The total distance traveled (SS) from t=0t=0 to t=2t=2 s is the integral of the instantaneous speed: S=02vdt=021+t2dtS = \int_{0}^{2} |\overrightarrow{v}| dt = \int_{0}^{2} \sqrt{1 + t^2} dt. Using the standard integral formula a2+x2dx=x2a2+x2+a22lnx+a2+x2\int \sqrt{a^2 + x^2} dx = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\ln|x + \sqrt{a^2 + x^2}|, with a=1a=1 and x=tx=t: S=[t21+t2+12lnt+1+t2]02S = \left[ \frac{t}{2}\sqrt{1 + t^2} + \frac{1}{2}\ln|t + \sqrt{1 + t^2}| \right]_{0}^{2} S=(221+22+12ln2+1+22)(021+02+12ln0+1+02)S = \left( \frac{2}{2}\sqrt{1 + 2^2} + \frac{1}{2}\ln|2 + \sqrt{1 + 2^2}| \right) - \left( \frac{0}{2}\sqrt{1 + 0^2} + \frac{1}{2}\ln|0 + \sqrt{1 + 0^2}| \right) S=(5+12ln(2+5))(0+12ln(1))S = \left( \sqrt{5} + \frac{1}{2}\ln(2 + \sqrt{5}) \right) - \left( 0 + \frac{1}{2}\ln(1) \right) Since ln(1)=0\ln(1) = 0: S=5+12ln(2+5)S = \sqrt{5} + \frac{1}{2}\ln(2 + \sqrt{5}) m. The time interval is Δt=20=2\Delta t = 2 - 0 = 2 s. Average speed =SΔt=5+12ln(2+5)2=25+ln(2+5)4= \frac{S}{\Delta t} = \frac{\sqrt{5} + \frac{1}{2}\ln(2 + \sqrt{5})}{2} = \frac{2\sqrt{5} + \ln(2 + \sqrt{5})}{4} m/s. Statement A is correct.

B) The magnitude of average velocity of the particle in the time interval from t=0 s to t= 2s is 2\sqrt{2} m/s Average velocity is total displacement divided by total time. Position at t=0t=0 s: r(0)=(0i^022j^)=0\overrightarrow{r}(0) = (0\hat{i} - \frac{0^2}{2}\hat{j}) = \vec{0} m. Position at t=2t=2 s: r(2)=(2i^222j^)=(2i^2j^)\overrightarrow{r}(2) = (2\hat{i} - \frac{2^2}{2}\hat{j}) = (2\hat{i} - 2\hat{j}) m. Displacement Δr=r(2)r(0)=(2i^2j^)0=(2i^2j^)\Delta \overrightarrow{r} = \overrightarrow{r}(2) - \overrightarrow{r}(0) = (2\hat{i} - 2\hat{j}) - \vec{0} = (2\hat{i} - 2\hat{j}) m. Time interval Δt=20=2\Delta t = 2 - 0 = 2 s. Average velocity vavg=ΔrΔt=2i^2j^2=(i^j^)\overrightarrow{v}_{avg} = \frac{\Delta \overrightarrow{r}}{\Delta t} = \frac{2\hat{i} - 2\hat{j}}{2} = (\hat{i} - \hat{j}) m/s. The magnitude of average velocity is vavg=12+(1)2=1+1=2|\overrightarrow{v}_{avg}| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} m/s. Statement B is correct.

C) The magnitude of instantaneous acceleration of the particle at t = 2s is 1m/s21m/s^2 The acceleration vector is a=j^\overrightarrow{a} = -\hat{j} m/s2^2. The magnitude of acceleration is a=02+(1)2=1=1|\overrightarrow{a}| = \sqrt{0^2 + (-1)^2} = \sqrt{1} = 1 m/s2^2. Since the acceleration is constant, its magnitude is 11 m/s2^2 at any time tt, including t=2t=2 s. Statement C is correct.

D) The instantaneous speed of the particle at 2s, is 5\sqrt{5} m/s The instantaneous speed is v=1+t2|\overrightarrow{v}| = \sqrt{1 + t^2}. At t=2t=2 s, the instantaneous speed is v(2)=1+22=1+4=5|\overrightarrow{v}(2)| = \sqrt{1 + 2^2} = \sqrt{1 + 4} = \sqrt{5} m/s. Statement D is correct.

All four statements A, B, C, and D are correct.