Solveeit Logo

Question

Physics Question on Vector basics

The position vector of a point RR which divides the line joining P(6,3,2)P(6,\,3,-2) and Q(3,1,4)Q(3,1,-4) Q(3,1, - 4) in the ratio 2:12:1 externally is

A

i^+3j^2k^\hat{i}+3\hat{j}-2\hat{k}

B

3i^k^3\hat{i}-\hat{k}

C

j^6k^-\hat{j}-6\hat{k}

D

2i^j^2\hat{i}-\hat{j}

Answer

j^6k^-\hat{j}-6\hat{k}

Explanation

Solution

Let position vector of P and Q are Day
OP=6i^+3j^2k^OP=6\hat{i}+3\hat{j}-2\hat{k} and OQ=3i^+j^4k^OQ=3\hat{i}+\hat{j}-4\hat{k}
Now, by section formula
OR=[2×OQ1×OP21]OR=\left[ \frac{2\times OQ-1\times OP}{2-1} \right]
=(2(3i^+j^4k^)(6i^+3j^2k^)1)=\left( \frac{2(3\hat{i}+\hat{j}-4\hat{k})-(6\hat{i}+3\hat{j}-2\hat{k})}{1} \right)
=\left\\{ \frac{6\hat{i}+2\hat{j}-8\hat{k}-6\hat{i}-3\hat{j}+2\hat{k}}{1} \right\\}
=(j^6k^)=(-\hat{j}\,\,-\,6\hat{k})