Solveeit Logo

Question

Physics Question on Motion in a plane

The position vector of a particle is r=(acosωt)i^+(asinωt)j^ \overrightarrow{r} = (a \, \cos \, \omega t) \widehat{i} + (a \sin \omega t) \widehat{j}. The velocity of the particle is

A

directed towards the origin

B

directed away from the origin

C

parallel to the position vector

D

perpendicular to the position vector

Answer

perpendicular to the position vector

Explanation

Solution

Position vector of the particle
(t) = (a cos ωt)i^+(asinωt)j^ \omega t) \widehat{i} + (a \, sin \omega t) \widehat{j}
velocity vector
v=drdt=(aωsinωt)i^+(aωcosωt)j^\overrightarrow{v} = \frac{d \overrightarrow{r}}{dt} = ( - a \omega sin\, \omega t) \widehat{i} + (a \omega \, cos\, \omega t ) \widehat{j}
= ω[(asinωt)i^+(acosωt)j^]\omega [ ( - a \,sin\, \omega t) \widehat{i} + ( a\, cos\, \omega t ) \widehat{j} ]
vr=ω[(asinωt)i^+(acosωt)j^)][(acosωt)i^+(asinωt)j^)]\overrightarrow{v} \cdot \overrightarrow{r} = \omega [ ( - a \, sin \, \omega t ) \widehat{i} + (a \, cos\, \omega t) \widehat{ j} ) ] \cdot [ ( a \, cos \,\omega t) \widehat{ i} + (a \, sin \omega t) \widehat{j} ) ]
= ω[a2sinωtcosωt+a2cosωtsinωt]=0\omega [ - a^2 \, sin \, \omega t \, cos \, \omega t + a^2 \, cos \, \omega t \, sin \, \omega t ] = 0
Therefore velocity vector is perpendicular to the
displacement vector.