Solveeit Logo

Question

Mathematics Question on Vector Algebra

The position vector of AA and BB are 2i^+2j^+k^ 2\hat{i}+2\hat{j}+\hat{k} and 2i^+4j^+4k^2\hat{i}+4\hat{j}+4\hat{k} The length of the internal bisector of ?BOA?BOA triangle AOBAOB is

A

1369\sqrt{\frac{136}{9}}

B

1369\frac{\sqrt{136}}{9}

C

2179\sqrt{\frac{217}{9}}

D

203\frac{20}{3}

Answer

1369\sqrt{\frac{136}{9}}

Explanation

Solution

The correct answer is A:1369\sqrt{\frac{136}{9}}
Given that;
Position vector of A & B are;
2i^+2j^+k^2\hat i +2\hat j+\hat k &
2i^+4j^+4k^2\hat i+4\hat j+4\hat k respectively
OA=22+22+12=3units\therefore|OA|=\sqrt{2^2+2^2+1^2}=3units
OB=22+42+42=6units|OB|=\sqrt{2^2+4^2+4^2}=6units
Now let internal bisector OP divides AB with ratio 1:21\ratio 2
\therefore Position vector of D is (2,83,2)(2,\frac{8}{3},2)
OD=22+(83)2+22\therefore |OD|=\sqrt{2^2+(\frac{8}{3})^2+2^2}
=1369=\sqrt{\frac{136}{9}}
Vector