Solveeit Logo

Question

Mathematics Question on Vector Algebra

The position of a projectile launched from the origin at t=0t=0 is given by r^=(40i^+50j^)m\hat{r}=\left(40 \hat{i}+50\hat{ j}\right) m at t=2st=2 s. If the projectile was launched at an angle θ\theta from the horizontal, then θ\theta is (\left(\right. take g=10ms2)\left. g=10\, ms ^{-2}\right)

A

tan123\tan ^{-1} \frac{2}{3}

B

tan132\tan ^{-1} \frac{3}{2}

C

tan174\tan ^{-1} \frac{7}{4}

D

tan145\tan ^{-1} \frac{4}{5}

Answer

tan174\tan ^{-1} \frac{7}{4}

Explanation

Solution

From question, Horizontal velocity (initial),
ux=402=20m/su_{x}=\frac{40}{2}=20\,m/s
Vertical velocity (initial), 50=uyt+12gt250=u_{y} t+\frac{1}{2} g t^{2}
uy×212(10)×4\Rightarrow u_{y} \times 2 \frac{1}{2}(-10) \times 4
or, 50=2uy2050=2 u_{y}-20
or uy=702=35m/su_{y}=\frac{70}{2}=35\, m/s
tanθ=uyux=3520=74\therefore \tan \theta=\frac{u_{y}}{u_{x}}=\frac{35}{20}=\frac{7}{4}
\Rightarrow Angle θ=tan174\theta=\tan ^{-1} \frac{7}{4}