Solveeit Logo

Question

Physics Question on Oscillations

The position of a particle moving along xx -axis is given by x=x0(cos)2(?t)x=x_{0}\left(cos\right)^{2}\left(\right.?t\left.\right) . Its speed when it is at mean position is

A

2x0ω2x_{0}\omega

B

x0ω2x_{0}\omega ^{2}

C

x0ω2\frac{x_{0} \omega }{2}

D

x0ωx_{0}\omega

Answer

x0ωx_{0}\omega

Explanation

Solution

x=x0cos2?tx=x_{0}cos^{2}?t x=x0(cos2?t+12)\therefore x=x_{0}\left(\frac{cos 2 ?t + 1}{2}\right) x=x02+x02cos2?t\Rightarrow x=\frac{x_{0}}{2}+\frac{x_{0}}{2}cos2?t dxdt=x02sin2?t.2ω\therefore \frac{dx}{dt}=-\frac{x_{0}}{2}sin2?t \, . \, 2\omega dxdt=?x0sin2?t\Rightarrow \frac{dx}{dt}=-?x_{0}sin2?t So, the speed at mean position is v0=?x0v_{0}=?x_{0}