Solveeit Logo

Question

Mathematics Question on Vectors

The position of a particle is given by r=i^+2j^k^r =\hat{i}+2\hat{j}-\hat{k} and its linear momentum is given by p=3i^+4j^2k^p = 3\hat{i}+4\hat{j}-2\hat{k} . Then its angular momentum, about the origin is perpendicular to

A

yzyz- plane

B

zz- axis

C

yy- axis

D

xx- axis

Answer

xx- axis

Explanation

Solution

L=r×P=i^j^k^ 121 342 \overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{P}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & 2 & -1 \\\ 3 & 4 & -2 \\\ \end{matrix} \right|
L=i^(4+4)j^(2+3)+k^(46)\overrightarrow{L}=\hat{i}(-4+4)-\hat{j}(-2+3)+\hat{k}(4-6)
=j^2k^=-\hat{j}-2\hat{k} L\overrightarrow{L}
has components along -y axis and z-z axis. The angular momentum is in y-z plane ie, perpendicular to xx- axis