Solveeit Logo

Question

Question: The position of a particle is given by \(\overrightarrow{r} = 3t\widehat{i} + 2t\widehat{j} + 5\wide...

The position of a particle is given by r=3ti^+2tj^+5k^\overrightarrow{r} = 3t\widehat{i} + 2t\widehat{j} + 5\widehat{k}, where t is in seconds and the coefficients have the proper units for r\overrightarrow{r}to be in metres. The direction of velocity of the particle at t = 1 s is

A

53o53^{o}with x-axis

B

37o37^{o}with x-axis

C

30o30^{o} with y-axis

D

60o60^{o} with y-axis

Answer

53o53^{o}with x-axis

Explanation

Solution

Give : r=3ti^+2t2j^+5k^\overset{\rightarrow}{r} = 3t\widehat{i} + 2t^{2}\widehat{j} + 5\widehat{k}

Velocity,

v=drdt=ddt(3ti^+2t2j^+5k^)=3i^+4tj^ms1\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \frac{d}{dt}(3t\widehat{i} + 2t^{2}\widehat{j} + 5\widehat{k}) = 3\widehat{i} + 4t\widehat{j}ms^{- 1}

At t = 1 s, v=3i^+4j^ms1\overrightarrow{v} = 3\widehat{i} + 4\widehat{j}ms^{- 1}

Let θ\thetabe angle which the directions of v\overset{\rightarrow}{v} makes with the x-axis,

Then

tanθ=vyvx=43orθ=tan1(43)=53\tan\theta = \frac{v_{y}}{v_{x}} = \frac{4}{3}or\theta = \tan^{- 1}\left( \frac{4}{3} \right) = 53{^\circ}