Solveeit Logo

Question

Question: The position of a particle at time t is given by the relation \(x(t) = \left( \frac{v_{0}}{\alpha} \...

The position of a particle at time t is given by the relation x(t)=(v0α)(1cαt),x(t) = \left( \frac{v_{0}}{\alpha} \right)(1 - c^{- \alpha t}), where v0v_{0} is a constant and α>0\alpha > 0. The dimensions of v0v_{0} and α\alpha are respectively

A

M0L1T1M^{0}L^{1}T^{- 1}andT1T^{- 1}

B

M0L1T0M^{0}L^{1}T^{0} and T1T^{- 1}

C

M0L1T1M^{0}L^{1}T^{- 1}andLT2LT^{- 2}

D

M0L1T1M^{0}L^{1}T^{- 1} and TT

Answer

M0L1T1M^{0}L^{1}T^{- 1}andT1T^{- 1}

Explanation

Solution

From the principle of dimensional homogeneity [αt]\lbrack\alpha t\rbrack

= dimensionless [α]=[1t]=[T1]\therefore\lbrack\alpha\rbrack = \left\lbrack \frac{1}{t} \right\rbrack = \lbrack T^{- 1}\rbrack

Similarly [x]=[v0][α]\lbrack x\rbrack = \frac{\lbrack v_{0}\rbrack}{\lbrack\alpha\rbrack} [v0]=[x][α]=[L][T1]=[LT1]\therefore\lbrack v_{0}\rbrack = \lbrack x\rbrack\lbrack\alpha\rbrack = \lbrack L\rbrack\lbrack T^{- 1}\rbrack = \lbrack LT^{- 1}\rbrack.