Solveeit Logo

Question

Question: The position of a moving point in the XY-plane at time t is given by \(\left( (u\cos\alpha)t,(u\sin\...

The position of a moving point in the XY-plane at time t is given by ((ucosα)t,(usinα)t12gt2),\left( (u\cos\alpha)t,(u\sin\alpha)t - \frac{1}{2}gt^{2} \right), where u,α,gu,\alpha,gare constants. The locus of the moving point is.

A

A circle

B

A parabola

C

An ellipse

D

None of these

Answer

A parabola

Explanation

Solution

Let then t=hucosαt = \frac { h } { u \cos \alpha }. Putting the value of t in k=usinαt12gt2k = u \sin \alpha \cdot t - \frac { 1 } { 2 } g t ^ { 2 } we get k=htanα12gh2u2cos2αk = h \tan \alpha - \frac { 1 } { 2 } g \frac { h ^ { 2 } } { u ^ { 2 } \cos ^ { 2 } \alpha }

\thereforeLocus of (h, k) is y=xtanα12gx2u2cos2αy = x \tan \alpha - \frac { 1 } { 2 } g \frac { x ^ { 2 } } { u ^ { 2 } \cos ^ { 2 } \alpha }, which is a parabola.