Solveeit Logo

Question

Mathematics Question on types of differential equations

The population p(t)p(t) at time tt of a certain mouse species satisfies the differential equation dp(t)dt=0.5p(t)450.\frac{dp\left(t\right)}{dt} = 0.5 p\left(t\right) - 450. If p(0)=850p\left(0\right) = 850, then the time at which the population becomes zero is :

A

2n182 \,\ell n \,18

B

n9\ell n \,9

C

12n18\frac{1}{2} \,\ell n \,18

D

n18\ell n \,18

Answer

2n182 \,\ell n \,18

Explanation

Solution

2dp(t)900p(t)=dt2 \frac{dp\left(t\right)}{900 - p\left(t\right)}= - dt 2n(900p(t))=t+c- 2\,\ell n \left(900 - p\left(t\right)\right) = - t + c when t=0,p(0)=850t = 0, p\left(0\right) = 850 2n(50)=c- 2\ell n\left(50\right) = c 2n(50900p(t))=t\therefore\quad2\ell n\left(\frac{50}{900-p\left(t\right)}\right) = -t 900p(t)=50et/2900 - p\left(t\right) = 50 e^{t/2} p(t)=90050et/2p\left(t\right) = 900 - 50 e^{t/2} let p(t1)=0p\left(t_{1}\right) = 0 0=90050et120 = 900 - 50\,e^{\frac{t_{1}}{2}} t1=2n18\therefore\quad t_{1} = 2 \,\ell n \,18