Solveeit Logo

Question

Question: The pole of the straight line \(2 x ^ { 2 } + 2 y ^ { 2 } - 3 x + 5 y - 7 = 0\) is...

The pole of the straight line 2x2+2y23x+5y7=02 x ^ { 2 } + 2 y ^ { 2 } - 3 x + 5 y - 7 = 0 is

A

(3, 1)

B

(1, 3)

C

(3, – 1)

D

(– 3, 1)

Answer

(3, – 1)

Explanation

Solution

Equation of given circle is x2+y232x+52y72=0x ^ { 2 } + y ^ { 2 } - \frac { 3 } { 2 } x + \frac { 5 } { 2 } y - \frac { 7 } { 2 } = 0

(x34)2+(y+54)2916251672=0\left( x - \frac { 3 } { 4 } \right) ^ { 2 } + \left( y + \frac { 5 } { 4 } \right) ^ { 2 } - \frac { 9 } { 16 } - \frac { 25 } { 16 } - \frac { 7 } { 2 } = 0

(x34)2+(y+54)2458=0\Rightarrow \left( x - \frac { 3 } { 4 } \right) ^ { 2 } + \left( y + \frac { 5 } { 4 } \right) ^ { 2 } - \frac { 45 } { 8 } = 0

Put X=x34X = x - \frac { 3 } { 4 } and Y=y+54Y = y + \frac { 5 } { 4 } we get the equation of circle X2+Y2458=0X ^ { 2 } + Y ^ { 2 } - \frac { 45 } { 8 } = 0 and the line 9X+Y452=09 X + Y - \frac { 45 } { 2 } = 0

Hence pole =[9×458452,1×458452]=(94,14)= \left[ \frac { 9 \times \frac { 45 } { 8 } } { \frac { 45 } { 2 } } , \frac { 1 \times \frac { 45 } { 8 } } { \frac { 45 } { 2 } } \right] = \left( \frac { 9 } { 4 } , \frac { 1 } { 4 } \right).

But, x=94+34=3x = \frac { 9 } { 4 } + \frac { 3 } { 4 } = 3 and y=1454=1y = \frac { 1 } { 4 } - \frac { 5 } { 4 } = - 1,

hence the pole is (3, – 1)