Solveeit Logo

Question

Question: The pole of *l*x + my = 1 with respect to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =...

The pole of lx + my = 1 with respect to the ellipse

x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 lies on the ellipse x24a2+y24b2=1\frac{x^{2}}{4a^{2}} + \frac{y^{2}}{4b^{2}} = 1 if

A

b2 + a2m2 = 4

B

b2 + a2m2 = 2

C

a2 + b2m2 = 4

D

None of these

Answer

b2 + a2m2 = 2

Explanation

Solution

Pole of lx + my = 1 w.r.t. the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 is (a2l, b2m).

It will lie on the ellipse x24a2+y24b2=1\frac{x^{2}}{4a^{2}} + \frac{y^{2}}{4b^{2}} = 1

if a4l24a2+b4m24b2=1\frac{a^{4}l^{2}}{4a^{2}} + \frac{b^{4}m^{2}}{4b^{2}} = 1 or if a2l2 + b2m2 = 4, which is the required condition.