Solveeit Logo

Question

Question: The points with position vectors \(60\mathbf{i} + 3\mathbf{j}\), \(40\mathbf{i} - 8\mathbf{j},\) , \...

The points with position vectors 60i+3j60\mathbf{i} + 3\mathbf{j}, 40i8j,40\mathbf{i} - 8\mathbf{j}, , ai52ja\mathbf{i} - 52\mathbf{j} are collinear, if a=a =

A

– 40

B

40

C

20

D

None of these

Answer

– 40

Explanation

Solution

If the given points be A, B,C, then AB=k(BC)\overset{\rightarrow}{AB} = k(\overset{\rightarrow}{BC})

20i11j=k[(a40)i44j]\Rightarrow - 20\mathbf{i} - 11\mathbf{j} = k\left\lbrack (a - 40)\mathbf{i} - 44\mathbf{j} \right\rbrack

On comparing, 11=44kk=14- 11 = - 44k \Rightarrow k = \frac{1}{4}

And 20=14(a40)a=40.- 20 = \frac{1}{4}(a - 40) \Rightarrow a = - 40.