Question
Question: The points with position vectors \(60\mathbf{i} + 3\mathbf{j}\), \(40\mathbf{i} - 8\mathbf{j},\) , \...
The points with position vectors 60i+3j, 40i−8j, , ai−52j are collinear, if a=
A
– 40
B
40
C
20
D
None of these
Answer
– 40
Explanation
Solution
If the given points be A, B,C, then AB→=k(BC→)
⇒−20i−11j=k[(a−40)i−44j]
On comparing, −11=−44k⇒k=41
And −20=41(a−40)⇒a=−40.