Solveeit Logo

Question

Question: The points with position vectors\[20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[5\math...

The points with position vectors20i+pj20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ,5ij5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge and 10i13j10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge are collinear. The value of p is:

Explanation

Solution

If we have two vectors A and B then AB\overrightarrow {AB} is given as BA\overrightarrow B - \overrightarrow A . Two vectors A and B to be collinear, angle between the vector A and B made by the given position vectors should be 0 or 180 degree.

Complete step-by-step answer:
Suppose position vectorA=20i+pj\overrightarrow A = 20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ,B=5ij\overrightarrow B = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge and C=10i13j\overrightarrow C = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge .
Now, AB=BA\overrightarrow {AB} = \overrightarrow B - \overrightarrow A

=5ij(20i+pj) =15i(1+p)j  = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - (20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ) \\\ = - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge \\\

Similarly, =BC=CB\overrightarrow { = BC} = \overrightarrow C - \overrightarrow B

=10i13j(5ij) =5i12j  = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge - (5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge ) \\\ = 5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge \\\

As we know they are collinear, the angle between the vector AB and BC must be 0 or 180 degree.

AB×BC=0 (15i(1+p)j)×(5i12j)=0 0i+(15)(12)+(1+p)(5)+0j=0 180+5+5p=0 5p=185 p=37  \Rightarrow \overrightarrow {AB} \times \overrightarrow {BC} = 0 \\\ \Rightarrow \left( { - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge } \right) \times \left( {5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge } \right) = 0 \\\ \Rightarrow 0\mathop i\limits^ \wedge + ( - 15)( - 12) + (1 + p)(5) + 0\mathop j\limits^ \wedge = 0 \\\ \Rightarrow 180 + 5 + 5p = 0 \\\ \Rightarrow 5p = - 185 \\\ \Rightarrow p = - 37 \\\

Required value of p is -37.

Note: Collinear points are the points that lie on a single line and therefore the angle between them will either be 0 or 180 degree. So, if two vectors A\overrightarrow A and B\overrightarrow B are collinear then we can write it as A=nB\overrightarrow A = n\overrightarrow B .