Solveeit Logo

Question

Question: The points which trisect the line segment joining the points \[\left( 0,0 \right)\] and \[\left( 9,1...

The points which trisect the line segment joining the points (0,0)\left( 0,0 \right) and (9,12)\left( 9,12 \right) are
(A) (3,4)\left( 3,4 \right)
(B) (8,6)\left( 8,6 \right)
(C) (6,8)\left( 6,8 \right)
(D) (4,0)\left( 4,0 \right)

Explanation

Solution

Hint: Assume the coordinate of the point C be (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and the coordinate of the point D be (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) . The point C is the midpoint of the line joining the points A and D, and the point D is the midpoint of the line joining the points C and B. We know the formula for the midpoint of the line joining two points having coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) , (x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) . Use this formula and get the coordinates of the points C and D. Then, compare the coordinates of the points C and D with (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) respectively. Now, solve it further and get the values of x1{{x}_{1}} , y1{{y}_{1}} , x2{{x}_{2}} , and y2{{y}_{2}} .

Complete step-by-step answer:
According to the question, we have the coordinates of two points which are (0,0)\left( 0,0 \right) and (9,12)\left( 9,12 \right) .
The coordinate of the point A = (0,0)\left( 0,0 \right) ………………..……(1)
The coordinate of the point B = (9,12)\left( 9,12 \right) ……………………(2)
For the line AB to be divided into 3 equal parts we need two more points.
Let the coordinate of the point C be (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and the coordinate of the point D be (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) .
The coordinate of the point C = (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) ………………………..(3)
The coordinate of the point D = (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) ………………………(4)

The points C and D are trisecting the line AB. We can say that AC is equal to CD and CD is equal to DB. So,
AC = CD = DB …………………………(5)
We know the formula for the midpoint of the line joining two points having coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) , (x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) ………………………(6)
For the line AD, we have, AC = CD. It means that the point C (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) is the midpoint of the line joining the points A (0,0)\left( 0,0 \right) and D (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) .
Now, using equation (6) to obtain the midpoint of the line AD.
(x1,y1)=(0+x22,0+y22)\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{0+{{x}_{2}}}{2},\dfrac{0+{{y}_{2}}}{2} \right)
(x1,y1)=(x22,y22)\Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{{{x}_{2}}}{2},\dfrac{{{y}_{2}}}{2} \right) ……………………..(7)
Comparing the LHS and RHS of equation (7), we get x1=x22{{x}_{1}}=\dfrac{{{x}_{2}}}{2} and y1=y22{{y}_{1}}=\dfrac{{{y}_{2}}}{2} .
Now, solving
x1=x22{{x}_{1}}=\dfrac{{{x}_{2}}}{2}
2x1=x2\Rightarrow 2{{x}_{1}}={{x}_{2}} ……………….(8)
Now, solving
y1=y22{{y}_{1}}=\dfrac{{{y}_{2}}}{2}
2y1=y2\Rightarrow 2{{y}_{1}}={{y}_{2}} ……………….(9)
For the line CB, we have, CD = DB. It means that the point D (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is the midpoint of the line joining the points C (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and B (9,12)\left( 9,12 \right) .
Now, using equation (6) to obtain the midpoint of the line CB.
(x2,y2)=(x1+92,y1+122)\left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{{{x}_{1}}+9}{2},\dfrac{{{y}_{1}}+12}{2} \right) ……………………..(10)
Comparing the LHS and RHS of equation (10), we get x2=x1+92{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2} and y2=y1+122{{y}_{2}}=\dfrac{{{y}_{1}}+12}{2} .
Now, solving
x2=x1+92{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2}
2x2=x1+9\Rightarrow 2{{x}_{2}}={{x}_{1}}+9 ……………….(11)
Now, putting the value of x2{{x}_{2}} from equation (8) in equation (10), we get

& \Rightarrow 2\left( 2{{x}_{1}} \right)={{x}_{1}}+9 \\\ & \Rightarrow 4{{x}_{1}}={{x}_{1}}+9 \\\ & \Rightarrow 4{{x}_{1}}-{{x}_{1}}=9 \\\ & \Rightarrow 3{{x}_{1}}=9 \\\ \end{aligned}$$ $$\Rightarrow {{x}_{1}}=3$$ …………………….(12) Putting the value of $${{x}_{1}}$$ in equation (8), we get $$\begin{aligned} & \Rightarrow 2{{x}_{1}}={{x}_{2}} \\\ & \Rightarrow 2.3={{x}_{2}} \\\ \end{aligned}$$ $$\Rightarrow 6={{x}_{2}}$$ ……………………….(13) Now, solving $${{y}_{2}}=\dfrac{{{y}_{1}}+12}{2}$$ $$\Rightarrow 2{{y}_{2}}={{y}_{1}}+12$$ ……………….(14) Now, putting the value of $${{y}_{2}}$$ from equation (9) in equation (14), we get $$\begin{aligned} & \Rightarrow 2\left( 2{{y}_{1}} \right)={{y}_{1}}+12 \\\ & \Rightarrow 4{{y}_{1}}={{y}_{1}}+12 \\\ & \Rightarrow 4{{y}_{1}}-{{y}_{1}}=12 \\\ & \Rightarrow 3{{y}_{1}}=12 \\\ \end{aligned}$$ $$\Rightarrow {{y}_{1}}=4$$ …………………..(15) Putting the value of $${{y}_{1}}$$ in equation (8), we get $$\begin{aligned} & \Rightarrow 2{{y}_{1}}={{y}_{2}} \\\ & \Rightarrow 2.4={{y}_{2}} \\\ \end{aligned}$$ $$\Rightarrow 8={{y}_{2}}$$ ………………..(16) From equation (12), equation (13), equation (15), and equation (16), we have the values of $${{x}_{1}}$$ , $${{y}_{1}}$$ , $${{x}_{2}}$$ , and $${{y}_{2}}$$ . The coordinate of the point C = $$\left( {{x}_{1}},{{y}_{1}} \right)$$ = $$\left( 3,4 \right)$$ . The coordinate of the point D = $$\left( {{x}_{2}},{{y}_{2}} \right)$$ = $$\left( 6,8 \right)$$ . Hence, the correct option is (C) and (D). Note: We can also solve this question by using section formula. We know the formula that the coordinate of a point which divides the line joining two point $$\left( {{x}_{1}},{{y}_{1}} \right)$$ and $$\left( {{x}_{2}},{{y}_{2}} \right)$$ in the ratio m:n is, $$\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$$ ……………….(1) Let the coordinate of the point C be $$\left( {{x}_{1}},{{y}_{1}} \right)$$ and the coordinate of the point D be $$\left( {{x}_{2}},{{y}_{2}} \right)$$ . The coordinate of the point C = $$\left( {{x}_{1}},{{y}_{1}} \right)$$ ………………………..(2) The coordinate of the point D = $$\left( {{x}_{2}},{{y}_{2}} \right)$$ ………………………(3) ![](https://www.vedantu.com/question-sets/699198de-f549-4433-abec-f83f0c3a41db369544196321470502.png) In the figure we can see that AC = CD = DB. So, we can say that the point C $$\left( {{x}_{1}},{{y}_{1}} \right)$$ is dividing the line AB ratio 1:2 and the point D $$\left( {{x}_{2}},{{y}_{2}} \right)$$is dividing the line AB in the ratio 2:1. ![](https://www.vedantu.com/question-sets/f6dc5514-0458-4fa7-9a50-b9c6ade2ca278225063312636007287.png) The point C $$\left( {{x}_{1}},{{y}_{1}} \right)$$ is dividing the line joining the points A $$\left( 0,0 \right)$$ and B $$\left( 9,12 \right)$$ in the ratio 1:2. Using, equation (1), we can get the coordinates of the point C $$\left( {{x}_{1}},{{y}_{1}} \right)$$ . $$\begin{aligned} & \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{1\times 9+2\times 0}{1+2},\dfrac{1\times 12+2\times 0}{1+2} \right) \\\ & \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{9}{3},\dfrac{12}{3} \right) \\\ & \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( 3,4 \right) \\\ \end{aligned}$$ ![](https://www.vedantu.com/question-sets/24004c08-daba-4b62-8238-7a48f7873c3b4315656403016928986.png) The point D $$\left( {{x}_{2}},{{y}_{2}} \right)$$ is dividing the line joining the points A $$\left( 0,0 \right)$$ and B $$\left( 9,12 \right)$$ in the ratio 2:1. Using, equation (1), we can get the coordinates of the point D $$\left( {{x}_{2}},{{y}_{2}} \right)$$ . $$\begin{aligned} & \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{2\times 9+1\times 0}{1+2},\dfrac{2\times 12+1\times 0}{1+2} \right) \\\ & \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{18}{3},\dfrac{24}{3} \right) \\\ & \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( 6,8 \right) \\\ \end{aligned}$$ The coordinate of the point C = $$\left( {{x}_{1}},{{y}_{1}} \right)$$ = $$\left( 3,4 \right)$$ . The coordinate of the point D = $$\left( {{x}_{2}},{{y}_{2}} \right)$$ = $$\left( 6,8 \right)$$ . Hence, the correct option is (C) and (D).