Solveeit Logo

Question

Question: The points P is equidistant from A(1,3), B (–3,5) and C(5,–1). Then PA =...

The points P is equidistant from A(1,3), B (–3,5) and

C(5,–1). Then PA =

A

5

B

555\sqrt{5}

C

25

D

5105\sqrt{10}

Answer

5105\sqrt{10}

Explanation

Solution

Perpendicular bisector of A(1,3)A ( 1,3 ) and B(3,5)B ( - 3,5 ) is

2x(x1x2)+2y(y1y2)=(x12+y12)(x22+y22)2 x \left( x _ { 1 } - x _ { 2 } \right) + 2 y \left( y _ { 1 } - y _ { 2 } \right) = \left( x _ { 1 } ^ { 2 } + y _ { 1 } ^ { 2 } \right) - \left( x _ { 2 } ^ { 2 } + y _ { 2 } ^ { 2 } \right)

2x(1+3)+2y(35)=(1+9)(9+25)\Rightarrow 2 x ( 1 + 3 ) + 2 y ( 3 - 5 ) = ( 1 + 9 ) - ( 9 + 25 )

2xy+6=0\Rightarrow 2 x - y + 6 = 0 .....(i)

Perpendicular bisector of A(1,3)A ( 1,3 ) and C(5,1)C ( 5 , - 1 ) is

2x(15)+2y(3+1)=(1+9)(25+1)2 x ( 1 - 5 ) + 2 y ( 3 + 1 ) = ( 1 + 9 ) - ( 25 + 1 )

xy2=0\Rightarrow x - y - 2 = 0 .....(ii)

Point of intersection of (i) and (ii) is P=(8,10)P = ( - 8 , - 10 )

Then PA=(1+8)2+(3+10)2=81+169P A = \sqrt { ( 1 + 8 ) ^ { 2 } + ( 3 + 10 ) ^ { 2 } } = \sqrt { 81 + 169 }

=250=510= \sqrt { 250 } = 5 \sqrt { 10 } .